scholarly journals Diagnostic accuracy of quantitative flow ratio (QFR) and vessel fractional flow reserve (vFFR) estimated retrospectively by conventional radiation saving X-ray angiography

Author(s):  
Chongying Jin ◽  
Anantharaman Ramasamy ◽  
Hannah Safi ◽  
Yakup Kilic ◽  
Vincenzo Tufaro ◽  
...  

Abstract Background Angiography derived FFR reveals good performance in assessing intermediate coronary stenosis. However, its performance under contemporary low X-ray frame and pulse rate settings is unknown. We aim to validate the feasibility and performance of quantitative flow ratio (QFR) and vessel fractional flow reserve (vFFR) under such angiograms. Methods This was an observational, retrospective, single center cohort study. 134 vessels in 102 patients, with angiograms acquired under 7.5fps and 7pps mode, were enrolled. QFR (fQFR and cQFR) and vFFR were validated with FFR as the gold standard. A conventional manual and a newly developed algorithmic exclusion method (M and A group) were both evaluated for identification of poor-quality angiograms. Results Good agreement between QFR/vFFR and FFR were observed in both M and A group, except for vFFR in the M group. The correlation coefficients between fQFR/cQFR/vFFR and FFR were 0.6242, 0.5888, 0.4089 in the M group, with rvFFR significantly lower than rfQFR (p = 0.0303), and 0.7055, 0.6793, 0.5664 in the A group, respectively. AUCs of detecting lesions with FFR ≤ 0.80 were 0.852 (95% CI 0.722–0.913), 0.858 (95% CI 0.778–0.917), 0.682 (95% CI 0.586–0.768), for fQFR/cQFR/vFFR in the M group, while vFFR performed poorer than fQFR (p = 0.0063) and cQFR (p = 0.0054). AUCs were 0.898 (95% CI 0.811–0.945), 0.892 (95% CI 0.803–0.949), 0.843 (95% CI 0.746–0.914) for fQFR/cQFR/vFFR in the A group. AUCvFFR was significantly higher in the A group than that in the M group (p = 0.0399). Conclusions QFR/vFFR assessment is feasible under 7.5fps and 7pps angiography, where cQFR showed no advantage compared to fQFR. Our newly developed algorithmic exclusion method could be a better method of selecting angiograms with adequate quality for angiography derived FFR assessment.

2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
J M Smit ◽  
G Koning ◽  
A R Van Rosendael ◽  
M El Mahdiui ◽  
B J Mertens ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ruitao Zhang ◽  
Jianwei Zhang ◽  
Lijun Guo

Background. Use of the fractional flow reserve (FFR) technique is recommended to evaluate coronary stenosis severity and guide revascularization. However, its high cost, time to administer, and the side effects of adenosine reduce its clinical utility. Two novel adenosine-free indices, contrast-FFR (cFFR) and quantitative flow ratio (QFR), can simplify the functional evaluation of coronary stenosis. This study aimed to analyze the diagnostic performance of cFFR and QFR using FFR as a reference index. Methods. We conducted a systematic review and meta-analysis of observational studies in which cFFR or QFR was compared to FFR. A bivariate model was applied to pool diagnostic parameters. Cochran’s Q test and the I2 index were used to assess heterogeneity and identify the potential source of heterogeneity by metaregression and sensitivity analysis. Results. Overall, 2220 and 3000 coronary lesions from 20 studies were evaluated by cFFR and QFR, respectively. The pooled sensitivity and specificity were 0.87 (95% CI: 0.81, 0.91) and 0.92 (95% CI: 0.88, 0.94) for cFFR and 0.87 (95% CI: 0.82, 0.91) and 0.91 (95% CI: 0.87, 0.93) for QFR, respectively. No statistical significance of sensitivity and specificity for cFFR and QFR were observed in the bivariate analysis (P=0.8406 and 0.4397, resp.). The area under summary receiver-operating curve of cFFR and QFR was 0.95 (95% CI: 0.93, 0.97) for cFFR and 0.95 (95% CI: 0.93, 0.97). Conclusion. Both cFFR and QFR have good diagnostic performance in detecting functional severity of coronary arteries and showed similar diagnostic parameters.


2018 ◽  
Vol 20 (11) ◽  
pp. 1231-1238 ◽  
Author(s):  
Jeff M Smit ◽  
Gerhard Koning ◽  
Alexander R van Rosendael ◽  
Mohammed El Mahdiui ◽  
Bart J Mertens ◽  
...  

Abstract Aims Quantitative flow ratio (QFR) is a recently developed technique to calculate fractional flow reserve (FFR) based on 3D quantitative coronary angiography and computational fluid dynamics, obviating the need for a pressure-wire and hyperaemia induction. QFR might be used to guide patient selection for FFR and subsequent percutaneous coronary intervention (PCI) referral in hospitals not capable to perform FFR and PCI. We aimed to investigate the feasibility to use QFR to appropriately select patients for FFR referral. Methods and results Patients who underwent invasive coronary angiography in a hospital where FFR and PCI could not be performed and were referred to our hospital for invasive FFR measurement, were included. Angiogram images from the referring hospitals were retrospectively collected for QFR analysis. Based on QFR cut-off values of 0.77 and 0.86, our patient cohort was reclassified to ‘no referral’ (QFR ≥0.86), referral for ‘FFR’ (QFR 0.78–0.85), or ‘direct PCI’ (QFR ≤0.77). In total, 290 patients were included. Overall accuracy of QFR to detect an invasive FFR of ≤0.80 was 86%. Based on a QFR cut-off value of 0.86, a 50% reduction in patient referral for FFR could be obtained, while only 5% of these patients had an invasive FFR of ≤0.80 (thus, these patients were incorrectly reclassified to the ‘no referral’ group). Furthermore, 22% of the patients that still need to be referred could undergo direct PCI, based on a QFR cut-off value of 0.77. Conclusion QFR is feasible to use for the selection of patients for FFR referral.


2020 ◽  
Vol 26 (6) ◽  
pp. 793-795
Author(s):  
Paweł Kleczyński ◽  
Artur Dziewierz ◽  
Lukasz Rzeszutko ◽  
Dariusz Dudek ◽  
Jacek Legutko

Sign in / Sign up

Export Citation Format

Share Document