scholarly journals Exact solutions for vibrational levels of the Morse potential via the asymptotic iteration method

2006 ◽  
Vol 56 (6) ◽  
pp. 583-590 ◽  
Author(s):  
T. Barakat ◽  
K. Abodayeh ◽  
O. M. Al-Dossary
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Subur Pramono ◽  
A. Suparmi ◽  
Cari Cari

We study the exact solution of Dirac equation in the hyperspherical coordinate under influence of separableq-deformed quantum potentials. Theq-deformed hyperbolic Rosen-Morse potential is perturbed byq-deformed noncentral trigonometric Scarf potentials, where all of them can be solved by using Asymptotic Iteration Method (AIM). This work is limited to spin symmetry case. The relativistic energy equation and orbital quantum number equationlD-1have been obtained using Asymptotic Iteration Method. The upper radial wave function equations and angular wave function equations are also obtained by using this method. The relativistic energy levels are numerically calculated using Matlab, and the increase of radial quantum numberncauses the increase of bound state relativistic energy level in both dimensionsD=5andD=3. The bound state relativistic energy level decreases with increasing of both deformation parameterqand orbital quantum numbernl.


2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


Sign in / Sign up

Export Citation Format

Share Document