energy eigenvalues
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 86)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 61 (6) ◽  
pp. 689-702
Author(s):  
Ilyas Haouam

In this paper, we address the energy eigenvalues of two-dimensional Dirac oscillator perturbed by a dynamical noncommutative space. We derived the relativistic Hamiltonian of Dirac oscillator in the dynamical noncommutative space, in which the space-space Heisenberg-like commutation relations and noncommutative parameter are position-dependent. Then, we used this Hamiltonian to calculate the first-order correction to the eigenvalues and eigenvectors, based on the language of creation and annihilation operators and using the perturbation theory. It is shown that the energy shift depends on the dynamical noncommutative parameter τ . Knowing that, with a set of two-dimensional Bopp-shift transformation, we mapped the noncommutative problem to the standard commutative one.


Author(s):  
M. Chabab ◽  
I. El-ilali ◽  
A. Lahbas ◽  
M. Oulne

The low-lying collective spectra for axially symmetric nuclei are described within the Bohr–Hamiltonian by considering deformation-dependent mass coefficients and Kratzer potential in [Formula: see text] part. The energy eigenvalues and the total wave function of the problem are obtained in compact forms by means of the asymptotic iteration method. The numerical calculations are carried out for energy spectra as well as electromagnetic transition probabilities, and compared with experimental data in both cases: within and without the deformation-dependent mass (DDM) formalism. We investigate the nuclear observables of four even-A nuclei [Formula: see text]Sm, [Formula: see text]Gd, [Formula: see text]Yb, [Formula: see text]W and two odd-A nuclei [Formula: see text]Yb, [Formula: see text]Dy. Moreover, we will show that the choice of the Kratzer potential minimizes the level spacings within the [Formula: see text] band, which are usually overestimated by Bohr–Hamiltonian with Davidson potential.


Computation ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 138
Author(s):  
Salah B. Doma ◽  
Mahmoud A. Salem ◽  
Kalidas D. Sen

The energy eigenvalues of the ground state helium atom and lowest two excited states corresponding to the configurations 1s2s embedded in the plasma environment using Hulthén, Debye–Hückel and exponential cosine screened Coulomb model potentials are investigated within the variational Monte Carlo method, starting with the ultracompact trial wave functions in the form of generalized Hylleraas–Kinoshita functions and Guevara–Harris–Turbiner functions. The Lagrange mesh method calculations of energy are reported for the He atom in the ground and excited 1S and 3S states, which are in excellent agreement with the variational Monte Carlo results. Interesting relative ordering of eigenvalues are reported corresponding to the different screened Coulomb potentials in the He ground and excited electronic states, which are rationalized in terms of the comparison theorem of quantum mechanics.


Author(s):  
Madhurima Pandey ◽  
Debasish Majumdar ◽  
Amit Dutta Banik ◽  
Ashadul Halder

Violation of equivalence principle predicts that neutrinos of different flavor couple differently with gravity. Such a scenario can give rise to gravity induced flavor oscillations in addition to the usual mass flavor neutrino oscillations during the neutrino propagation. Even if the equivalence principle is indeed violated, their measure will be extremely small. We explore the possibility to probe the violation of equivalence principle (VEP) for the case of long baseline (LBL) neutrinos in a 4-flavor neutrino framework (3 active + 1 sterile) where both mass and gravity induced oscillations are considered. To this end, we have explicitly calculated the oscillation probability in 4-flavor framework that includes in addition to the mass-flavor mixing in matter, the gravity-flavor mixing also. The energy eigenvalues are then obtained by diagonalizing such a 4-flavor mixing matrix. The formalism is then employed to estimate the wrong and right sign muon yields at a far detector for neutrinos produced in a neutrino factory and travel through the Earth matter. These results are compared with the similar estimations when the usual three active neutrinos are considered.


2021 ◽  
Vol 36 (35) ◽  
Author(s):  
H. Naseri Karimvand ◽  
B. Lari ◽  
H. Hassanabadi ◽  
W. S. Chung

In this paper, after introducing a kind of [Formula: see text]-deformation in quantum mechanics, first [Formula: see text]-deformed form of Schrödinger equation for a single particle in a box is derived. Then, the energy eigenvalues and wave function in Schrödinger equation are studied. Also, we discuss the Carnot cycle by using of the energy eigenvalues. We obtain the thermodynamic properties such as force, heat transferred, work done and efficiency in the cycle. Finally, all results have satisfied what we had expected before.


Author(s):  
Abdelmadjid Maireche

In this paper, within the framework of relativistic quantum mechanics and using the improved approximation scheme to the centrifugal term for any [Formula: see text]states via Bopp’s shift method and standard perturbation theory, we have obtained the modified energy eigenvalues of a newly proposed modified unequal vector and scalar Hellmann plus modified Kratzer potentials (DUVSHMK-Ps) for some diatomic N2, I2, CO, NO, O2 and HCl molecules. This study includes corrections of the first-order in noncommutativity parameters [Formula: see text]. This potential is a superposition of the attractive Coulomb Yukawa potential plus the Kratzer potential and new central terms appear as a result of the effects of noncommutativity properties of space–space. The obtained energy eigenvalues appear as a function of noncommutativity parameters, the strength parameters [Formula: see text] and [Formula: see text] of the (scalar vector) Hellmann potential, the screening range parameter [Formula: see text], the dissociation energy of the vector, and scalar potential [Formula: see text], the equilibrium inter-nuclear distance [Formula: see text] in addition to the atomic quantum numbers [Formula: see text]. Furthermore, we obtained the corresponding modified energy of DUVSHMK-Ps in the symmetries of non-relativistic noncommutative quantum mechanics (NRNCQM). In both relativistic and non-relativistic problems, we show that the corrections on the spectrum energy are smaller than the main energy in the ordinary cases of RQM and NRQM.


Author(s):  
M. Abu-Shady ◽  
E. M. Khokha

In this study, the bound state solutions of the Dirac equation (DE) have been determined with the generalized Cornell potential model (GCPM) under the condition of spin symmetry. The GCPM includes the Cornell potential plus a combination of the harmonic and inversely quadratic potentials. In the framework of the Nikiforov–Uvarov (NU) method, the relativistic and nonrelativistic energy eigenvalues for the GCPM have been obtained. The energies spectra of the Kratzer potential (KP) and the modified Kratzer potential (MKP) have been derived as particular cases of the GCPM. The present results have been applied to some diatomic molecules (DMs) as well as heavy and heavy-light mesons. The energy eigenvalues of the KP and MKP have been computed for several DMs, and they are fully consistent with the results found in the literature. In addition, the energy eigenvalues of the GCPM have been employed for predicting the spin-averaged mass spectra of heavy and heavy-light mesons. One can note that our predictions are in close agreement with the experimental data as well as enhanced compared to the recent studies.


2021 ◽  
Vol 13 (6) ◽  
pp. 20
Author(s):  
Francis T. Oduro ◽  
Amos Odoom

This study was designed to obtain the energy eigenvalues and the corresponding Eigenfunctions of the Quantum Harmonic oscillator through an alternative approach. Starting with an appropriate family of solutions to a relevant linear di erential equation, we recover the Schr¨odinger Equation together with its eigenvalues and eigenfunctions of the Quantum Harmonic Oscillator via the use of Gram Schmidt orthogonalization process in the usual Hilbert space. Significantly, it was found that there exists two separate sequences arising from the Gram Schmidt Orthogonalization process; one in respect of the even eigenfunctions and the other in respect of the odd eigenfunctions.


Author(s):  
Mohamed Al-Masaeed ◽  
Eqab M Rabei ◽  
Ahmed Al-Jamel ◽  
Dumitru Baleanu

In this paper, the perturbation theory is extended to be applicable for systems containing conformable derivative of fractional order [Formula: see text]. This is needed as an essential and powerful approximation method for describing systems with conformable differential equations that are difficult to solve analytically. The work here is derived and discussed for the conformable Hamiltonian systems that appears in the conformable quantum mechanics. The required [Formula: see text]-corrections for the energy eigenvalues and eigenfunctions are derived. To demonstrate this extension, three illustrative examples are given, and the standard values obtained by the traditional theory are recovered when [Formula: see text].


Author(s):  
M. Hosseinpour ◽  
H. Hassanabadi ◽  
J. Kriz ◽  
S. Hassanabadi ◽  
B. C. Lütfüoğlu

In this study, we survey the generalized Duffin–Kemmer–Petiau oscillator containing a non-minimal coupling interaction in the context of rainbow gravity in the presence of the cosmic topological defects in space-time. In this regard, we intend to investigate relativistic quantum dynamics of a spin-0 particle under the modification of the dispersion relation according to the Katanaev–Volovich geometric approach. Thus, based on the geometric model, we study the aforementioned bosonic system under the modified background by a few rainbow functions. In this way, by using an analytical method, we acquire energy eigenvalues and corresponding wave functions to each scenario. Regardless of rainbow gravity function selection, the energy eigenvalue can present symmetric, anti-symmetric, and symmetry breaking characteristics. Besides, one can see that the deficit angular parameter plays an important role in the solutions.


Sign in / Sign up

Export Citation Format

Share Document