Precipitation drives interannual variation in summer soil respiration in a Mediterranean-climate, mixed-conifer forest

2008 ◽  
Vol 92 (1-2) ◽  
pp. 109-122 ◽  
Author(s):  
Amy Concilio ◽  
Jiquan Chen ◽  
Siyan Ma ◽  
Malcolm North
2004 ◽  
Vol 33 (S1) ◽  
Author(s):  
Siyan Ma ◽  
Jiquan Chen ◽  
Malcolm North ◽  
Heather E. Erickson ◽  
Mary Bresee ◽  
...  

2005 ◽  
Vol 35 (7) ◽  
pp. 1581-1591 ◽  
Author(s):  
Amy Concilio ◽  
Siyan Ma ◽  
Qinglin Li ◽  
James LeMoine ◽  
Jiquan Chen ◽  
...  

The effects of management on soil carbon efflux in different ecosystems are still largely unknown yet crucial to both our understanding and management of global carbon flux. To compare the effects of common forest management practices on soil carbon cycling, we measured soil respiration rate (SRR) in a mixed-conifer and hardwood forest that had undergone various treatments from June to August 2003. The mixed-conifer forest, located in the Sierra Nevada Mountains of California, had been treated with thinning and burning manipulations in 2001, and the hardwood forest, located in the southeastern Missouri Ozarks, had been treated with harvesting manipulations in 1996 and 1997. Litter depth, soil temperature, and soil moisture were also measured. We found that selective thinning produced a similar effect on both forests by elevating SRR, soil moisture, and soil temperature, although the magnitude of response was greater in the mixed-conifer forest. Selective harvest increased SRR by 43% (from 3.38 to 4.82 µmol·m–2·s–1) in the mixed-conifer forest and by 14% (from 4.25 to 4.84 µmol·m–2·s–1) in the hardwood forest. Burning at the conifer site and even-aged harvesting at the mixed-hardwood site did not produce significantly different SRR from controls. Mean SRR were 3.24, 3.42, and 4.52 µmol·m–2·s–1, respectively. At both sites, manipulations did significantly alter SRR by changing litter depth, soil structure, and forest microclimate. SRR response varied by vegetation patch type, the scale at which treatments altered these biotic factors. Our findings provide forest managers first-hand information on the response of soil carbon efflux to various management strategies in different forests.


2010 ◽  
Vol 259 (5) ◽  
pp. 904-915 ◽  
Author(s):  
Siyan Ma ◽  
Amy Concilio ◽  
Brian Oakley ◽  
Malcolm North ◽  
Jiquan Chen

2008 ◽  
Vol 69 (2) ◽  
pp. 263-275 ◽  
Author(s):  
R. Scott Anderson ◽  
Renata B. Jass ◽  
Jaime L. Toney ◽  
Craig D. Allen ◽  
Luz M. Cisneros-Dozal ◽  
...  

Chihuahueños Bog (2925 m) in the Jemez Mountains of northern New Mexico contains one of the few records of late-glacial and postglacial development of the mixed conifer forest in southwestern North America. The Chihuahueños Bog record extends to over 15,000 cal yr BP. AnArtemisiasteppe, then an openPiceawoodland grew around a small pond until ca. 11,700 cal yr BP whenPinus ponderosabecame established. C/N ratios,δ13C andδ15N values indicate both terrestrial and aquatic organic matter was incorporated into the sediment. Higher percentages of aquatic algae and elevated C/N ratios indicate higher lake levels at the opening of the Holocene, but a wetland developed subsequently as climate warmed. From ca. 8500 to 6400 cal yr BP the pond desiccated in what must have been the driest period of the Holocene there. C/N ratios declined to their lowest Holocene levels, indicating intense decomposition in the sediment. Wetter conditions returned after 6400 cal yr BP, with conversion of the site to a sedge bog as groundwater levels rose. Higher charcoal influx rates after 6400 cal yr BP probably result from greater biomass production rates. Only minor shifts in the overstory species occurred during the Holocene, suggesting that mixed conifer forest dominated throughout the record.


2005 ◽  
Vol 71 (5) ◽  
pp. 2713-2722 ◽  
Author(s):  
Chris M. Yeager ◽  
Diana E. Northup ◽  
Christy C. Grow ◽  
Susan M. Barns ◽  
Cheryl R. Kuske

ABSTRACT This study was undertaken to examine the effects of forest fire on two important groups of N-cycling bacteria in soil, the nitrogen-fixing and ammonia-oxidizing bacteria. Sequence and terminal restriction fragment length polymorphism (T-RFLP) analysis of nifH and amoA PCR amplicons was performed on DNA samples from unburned, moderately burned, and severely burned soils of a mixed conifer forest. PCR results indicated that the soil biomass and proportion of nitrogen-fixing and ammonia-oxidizing species was less in soil from the fire-impacted sites than from the unburned sites. The number of dominant nifH sequence types was greater in fire-impacted soils, and nifH sequences that were most closely related to those from the spore-forming taxa Clostridium and Paenibacillus were more abundant in the burned soils. In T-RFLP patterns of the ammonia-oxidizing community, terminal restriction fragments (TRFs) representing amoA cluster 1, 2, or 4 Nitrosospira spp. were dominant (80 to 90%) in unburned soils, while TRFs representing amoA cluster 3A Nitrosospira spp. dominated (65 to 95%) in fire-impacted soils. The dominance of amoA cluster 3A Nitrosospira spp. sequence types was positively correlated with soil pH (5.6 to 7.5) and NH3-N levels (0.002 to 0.976 ppm), both of which were higher in burned soils. The decreased microbial biomass and shift in nitrogen-fixing and ammonia-oxidizing communities were still evident in fire-impacted soils collected 14 months after the fire.


Sign in / Sign up

Export Citation Format

Share Document