mechanical thinning
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 16)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 501 ◽  
pp. 119674
Author(s):  
James D. Johnston ◽  
Julia H. Olszewski ◽  
Becky A. Miller ◽  
Micah R. Schmidt ◽  
Michael J. Vernon ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1138
Author(s):  
Alberto Assirelli ◽  
Giuseppina Caracciolo ◽  
Giancarlo Roccuzzo ◽  
Fiorella Stagno

In this study, the thinner machine with yellow rod equipment was tested in relation to tree branch length and orientation in April 2019, in a narrow-canopied apricot orchard of Emilia Romagna Region, Italy. The trees were mechanically thinned with manual finishing, and comparative tests were carried out simultaneously with the ordinary hand thinning (control). Three groups of two plants were identified as replication for a total of six plants per row. Three rows were checked, considering field uniformity average. The branches were grouped into four classes according to their length: <30 cm, 30–60 cm, 60–90 cm and >90 cm. Branch inclination on the plant, radial or longitudinal with respect to the row, was evaluated. Fruit number before the thinning, after the first and the second machine intervention, after three days of the mechanical thinning and after the hand finishing was recorded. This experience showed satisfactory results in terms of thinning efficiency and reduced damage to both fruits and branches, as a function of the class length and insertion point in the main branch of the plant. Thinning efficiency was always kept above 37% of the left load after hand finishing, and on average between the treatments close to 44%. Fruit damages always remained below the economic thresholds to marketable production or to the plant.


Author(s):  
Tzeidle N. Wasserman ◽  
Amy E. M. Waltz ◽  
John Paul Roccaforte ◽  
Judith D. Springer ◽  
Joseph E. Crouse

AbstractUnderstanding naturally occurring pine regeneration dynamics in response to thinning and burning treatments is necessary not only to measure the longevity of the restoration or fuels treatment, but also to assess how well regeneration meets forest sustainability guidelines and whether natural regeneration is sufficient for maintaining a sustainable forest structure and composition. A synthesis review was carried out on the effects of mechanical thinning and prescribed burn treatments on natural pine regeneration response in frequent-fire ponderosa pine forests across the western United States. The focus was on site-specific variability in pine regeneration dynamics, temporal trends in regeneration presence and abundance, and response to treatment as described in the current literature using 29 studies that met our evidence-based review protocols. Data showed that the effects of thinning and burning treatments on regeneration depended on time since treatment. Mechanical thinning, prescribed burning, and thinning plus burn treatments all increased seedling density, but there was high variability among sites and studies. There were mixed results in the short-term (< 10 years) with both increasing and decreasing regeneration, and a general increase in regeneration 11 − 20 years post-treatment. Some long-term studies (> 20 years) concluded that stands can return to pre-treatment densities in terms of total trees per hectare and forest floor duff levels when there are no maintenance treatments applied. Several studies showed the average ponderosa pine seedling presence, survival and growth found in today’s forests to be at a high density; this combined with missed fire cycles could contribute to future fire risk and reduce the efficacy of maintaining fuel reduction goals.


2021 ◽  
Author(s):  
Xiao Fu ◽  
Abigail Lidar ◽  
Michael Benjamin Kantar ◽  
Barath Raghavan

Wildfires ravage lands in seasonally-dry regions, imposing high costs on infrastructure maintenance and human habitation at the wildland-urban interface (WUI). Current fire mitigation approaches present upfront costs with uncertain long-term payoffs. Instead, we show that a simple landscape intervention on human-managed wildlands -- buffers of a low-flammability crop species such as banana irrigated using recycled water -- can mitigate wildfires, produce food profitably, and provide additional ecosystem services. Recreating a recent, major fire in simulation, we find that a medium-sized banana buffer decreases fireline intensity by 96%, similar to prescribed burns and mechanical thinning combined, and delays the fire by 316 minutes, enabling safe and effective firefighting. We find that under climate change, despite worsened fires, banana buffers will still have a protective effect. We also find that banana buffers with average yield could produce a profit of $56k USD/hectare through fruit sales, in addition to fire mitigation and other benefits.


2021 ◽  
Vol 74 (1) ◽  
pp. 30-36
Author(s):  
Dion C. Mundy ◽  
Michael C.T. Trought ◽  
Andrew R.G. McLachlan ◽  
Susan M. Neal ◽  
Dominic Pecchenino

Mechanical fruit thinning could be a practical and cost-effective alternative to hand thinning of Sauvignon blanc grapes to increase quality by reducing yield. Botrytis bunch rot, caused by the fungus Botrytis cinerea, is the main seasonal disease risk for grapes grown in New Zealand but it is unknown if this disease is exacerbated by mechanical rather than manual thinning of the vines. It was hypothesised that the damage caused by mechanical thinning would result in more disease or increase disease pressure than hand thinning or no thinning. Botrytis bunch rot was determined in the field at harvest following mechanical thinning in the 2009, 2010 and 2011 seasons compared with an un-thinned control. In the 2011 season, possible mechanisms that may have influenced disease severity were investigated. The parameters investigated were: bunch openness; berry susceptibility to infection; and percentage of bunch debris infected with Botrytis cinerea. Mechanical thinning resulted in the same or lower observed disease severity compared with the un-thinned control in the 2009, 2010 and 2011 seasons while reducing yield as desired. In all seasons, both heavy and light machine thinning treatments reduced incidence of botrytis compared to the un-thinned control and the heavy machine treatment always reduced disease severity compared to the un-thinned control. Berry susceptibility to Botrytis cinerea was a complex interaction between various factors. Heavy machine thinned berries without wounding and inoculation were significantly less susceptible than the un-thinned control. Further investigation will be required to determine if the significant differences observed in berry susceptibility to infection and total infected bunch debris per bunch can be correlated with observed field disease levels.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 637
Author(s):  
Sally A. Bound

Reducing levels of fruit set is often desirable in many European pear (Pyrus communis L.) cultivars. With a negative linear relationship between crop load and fruit size, crop load management early in the season minimises wastage of tree carbohydrate resources and provides maximum benefits in terms of fruit size and quality. There are several tools available for managing crop load including hand thinning, chemical thinning, photosynthetic inhibition through shading or application of chemicals, mechanical thinning and pruning. While hand thinning is the most accurate method of reducing excessive crop loads, there are some major drawbacks. With awareness that the early thinning offered by chemical thinning provides distinct advantages with regard to fruit size and other quality parameters, chemical thinning is gaining increasing acceptance in pear production. Some chemicals are used worldwide for thinning, but there are differences between countries and growing regions on recommended application timing and concentrations. The risks involved in chemical thinning can be mitigated by use of a structured approach, using a sequential spray program with both bloom and post-bloom thinners. Knowledge of conditions that impact the carbon balance of the tree and the ability to make use of carbon-deficit conditions are likely to improve the predictability of chemical thinning. Mechanical thinning has potential as a thinning tool, with advantages over chemical thinning in that it is environmentally friendly, can be used in organic production and is not weather dependent. Although artificial bud extinction has not been trialled on pears to date, it has been shown to be economically viable in apple. As it is a precision crop load management method that minimises tree resource wastage, it should be given serious consideration. As growers require large annual yields of high-quality fruit, the aim of this review was to examine current and potential crop load management methods for European pear cultivars and provide a portfolio of available options that can be integrated into a systematic approach for managing crop load.


2021 ◽  
Vol 491 ◽  
pp. 119162
Author(s):  
Aaron P. Tormanen ◽  
Jorista Garrie

2020 ◽  
Vol 30 (6) ◽  
pp. 745-750
Author(s):  
Coral Ortiz ◽  
Antonio Torregrosa ◽  
Enrique Ortí ◽  
Sebastià Balasch

Thinning is the process of removing some flowers or fruit to increase fruit size at harvest. In the Valencia region of Spain, the thinning operation for citrus fruit (Citreae) is performed for some mandarin varieties. This is always performed manually; however, this method is very expensive. The goal of this research study was to assess the mechanical thinning of mandarin (Citrus reticulata) using a hand-held branch shaker. Different thinning treatments were conducted over a 3-year period. The gasoline-powered branch shaker was capable of detaching fruit four- to five-times faster than manual thinning. Final fruit size was significantly higher using manual and mechanical thinning compared with a no thinning treatment. Similar final fruit size was obtained with manual and mechanical thinning. However, no significant differences were found in final fruit yield by weight among no thinning, mechanical thinning, and manual thinning treatments. The use of a branch shaker could be recommended for thinning operations to increase efficiency, reduce labor costs, and obtain larger and higher-quality fruit.


ACS Nano ◽  
2020 ◽  
Vol 14 (12) ◽  
pp. 17091-17099
Author(s):  
Qi Zhu ◽  
Youran Hong ◽  
Guang Cao ◽  
Yin Zhang ◽  
Xiaohan Zhang ◽  
...  

Plant Disease ◽  
2020 ◽  
Author(s):  
Anna Wallis ◽  
Mario R. Miranda-Sazo ◽  
Kerik Cox

The adoption of mechanical thinning and pruning in commercial apple orchards has largely been limited by the risk of development and spread of fire blight. This devastating disease, caused by the bacterial pathogen Erwinia amylovora, may be transmitted by mechanical injury such as pruning, especially under warm, moist conditions conducive to bacterial growth, infection, and disease development. However, risk may be mitigated by avoiding highest risk times and applying a bactericide, such as streptomycin, following mechanical thinning or pruning. In ‘Gala’ and ‘Idared’ orchards, we evaluated the risk of fire blight development and spread following mechanical thinning early in bloom (20% bloom), when seasonal temperatures are cooler and there are few open flowers available for infection. In both orchards, we also evaluated the spread and development of fire blight by mechanical pruning in July and in August, before and after terminal bud set when shoot growth is slowed and less susceptible to infection. We also assessed the potential efficacy of a streptomycin or Bacillus subtilis biopesticide application following mechanical thinning and pruning to mitigate the spread of fire blight. In the ‘Gala’ orchard, disease never developed beyond the inoculated tree following thinning or pruning, which was unexpected for this highly susceptible cultivar. In the ‘Idared’ orchard, incidence of blossom or shoot blight from the point source, represented as relative area under the disease progress curve (rAUDPC) was rarely different for trees that received mechanical thinning or mechanical pruning compared to untreated trees, and was frequently eliminated or reduced when the antibiotic streptomycin or the B. subtilis biopesticide was applied within 24 h of mechanical thinning or pruning. For both thinning and pruning, incidence of fire blight dropped off quickly beyond the inoculated tree in the ‘Idared’ orchard and generally was not observed in trees beyond 10-15 m from the inoculated point source or predicted beyond 10 m by exponential and power law models fit to the disease progress curves. The results of this work demonstrate the low risk for fire blight development and spread by mechanical thinning and pruning when practiced under low-risk conditions—early in bloom for mechanical thinning, and after terminal bud set (in August) for mechanical pruning—especially when paired with a subsequent bactericide application. This study demonstrates the safe use of mechanical thinning and pruning in commercial apple production, corroborated by anecdotal evidence from apple growers in Western New York State.


Sign in / Sign up

Export Citation Format

Share Document