scholarly journals A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides

2017 ◽  
Vol 70 (1) ◽  
pp. 33-59 ◽  
Author(s):  
Guanglin Xu ◽  
Samuel Burer
Author(s):  
Omar El Housni ◽  
Vineet Goyal

In this paper, we study the performance of affine policies for a two-stage, adjustable, robust optimization problem with a fixed recourse and an uncertain right-hand side belonging to a budgeted uncertainty set. This is an important class of uncertainty sets, widely used in practice, in which we can specify a budget on the adversarial deviations of the uncertain parameters from the nominal values to adjust the level of conservatism. The two-stage adjustable robust optimization problem is hard to approximate within a factor better than [Formula: see text] even for budget of uncertainty sets in which [Formula: see text] is the number of decision variables. Affine policies, in which the second-stage decisions are constrained to be an affine function of the uncertain parameters provide a tractable approximation for the problem and have been observed to exhibit good empirical performance. We show that affine policies give an [Formula: see text]-approximation for the two-stage, adjustable, robust problem with fixed nonnegative recourse for budgeted uncertainty sets. This matches the hardness of approximation, and therefore, surprisingly, affine policies provide an optimal approximation for the problem (up to a constant factor). We also show strong theoretical performance bounds for affine policy for a significantly more general class of intersection of budgeted sets, including disjoint constrained budgeted sets, permutation invariant sets, and general intersection of budgeted sets. Our analysis relies on showing the existence of a near-optimal, feasible affine policy that satisfies certain nice structural properties. Based on these structural properties, we also present an alternate algorithm to compute a near-optimal affine solution that is significantly faster than computing the optimal affine policy by solving a large linear program.


Energy ◽  
2021 ◽  
Vol 222 ◽  
pp. 119894
Author(s):  
Mohammad H. Shams ◽  
Majid Shahabi ◽  
Mohammad MansourLakouraj ◽  
Miadreza Shafie-khah ◽  
João P.S. Catalão

2021 ◽  
Author(s):  
Mehran Poursoltani ◽  
Erick Delage

Although the stochastic optimization paradigm exploits probability theory to optimize the tradeoff between risk and returns, robust optimization has gained significant popularity by reducing computation requirements through the optimization of the worst-case scenario in a set. An appealing alternative to stochastic and robust optimization consists in optimizing decisions using the notion of regret. Although regret minimization models are generally perceived as leading to less conservative decisions than those produced by robust optimization, their numerical optimization is a real challenge in general. In “Adjustable Robust Optimization Reformulations of Two-Stage Worst-case Regret Minimization Problems,” M. Poursoltani and E. Delage show how to reduce a two-stage worst-case absolute/relative regret minimization problem to a two-stage robust optimization one. This opens the way for taking advantage of recent advanced approximate and exact solution schemes for these hard problems. Their experiments corroborate the high-quality performance of affine decision rules as a popular polynomial-time approximation scheme, from which, under mild conditions, one can even expect exact regret-averse decisions.


2020 ◽  
Vol 77 (2) ◽  
pp. 539-569
Author(s):  
Nicolas Kämmerling ◽  
Jannis Kurtz

Abstract In this work we study binary two-stage robust optimization problems with objective uncertainty. We present an algorithm to calculate efficiently lower bounds for the binary two-stage robust problem by solving alternately the underlying deterministic problem and an adversarial problem. For the deterministic problem any oracle can be used which returns an optimal solution for every possible scenario. We show that the latter lower bound can be implemented in a branch and bound procedure, where the branching is performed only over the first-stage decision variables. All results even hold for non-linear objective functions which are concave in the uncertain parameters. As an alternative solution method we apply a column-and-constraint generation algorithm to the binary two-stage robust problem with objective uncertainty. We test both algorithms on benchmark instances of the uncapacitated single-allocation hub-location problem and of the capital budgeting problem. Our results show that the branch and bound procedure outperforms the column-and-constraint generation algorithm.


Author(s):  
Amir Ardestani-Jaafari ◽  
Erick Delage

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method mainly relies on a linearization scheme employed in bilinear programming; therefore, we will say that it gives rise to the linearized robust counterpart models. We identify a close relation between this linearized robust counterpart model and the popular affinely adjustable robust counterpart model. We also describe methods of modifying both types of models to make these approximations less conservative. These methods are heavily inspired by the use of valid linear and conic inequalities in the linearization process for bilinear models. We finally demonstrate how to employ this new scheme in location-transportation and multi-item newsvendor problems to improve the numerical efficiency and performance guarantees of robust optimization.


Sign in / Sign up

Export Citation Format

Share Document