decision rules
Recently Published Documents


TOTAL DOCUMENTS

2610
(FIVE YEARS 524)

H-INDEX

82
(FIVE YEARS 8)

2022 ◽  
Vol 59 (2) ◽  
pp. 102813
Author(s):  
Wu Shulei ◽  
Zhang Fengru ◽  
Chen Huandong ◽  
Zhang Yang

2022 ◽  
Vol 17 (s1) ◽  
Author(s):  
Ciro José Jardim de Figueiredo ◽  
Caroline Maria de Miranda Mota ◽  
Amanda Gadelha Ferreira Rosa ◽  
Arthur Pimentel Gomes de Souza ◽  
Simone Maria da Silva Lima

The paper presents an innovative application to identify areas vulnerable to coronavirus disease 2019 (COVID-19) considering a combination of spatial analysis and a multi-criteria learning approach. We applied this methodology in the state of Pernambuco, Brazil identifying vulnerable areas by considering a set of determinants and risk factors for COVID-19, including demographic, economic and spatial characteristics and the number of human COVID-19 infections. Examining possible patterns over a set number of days taking the number of cases recorded, we arrived at a set of compatible decision rules to explain the relation between risk factors and COVID-19 cases. The results reveal why certain municipalities are critically vulnerable to COVID-19 highlighting locations for which knowledge can be gained about environmental factors.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 244
Author(s):  
Ruixia Yan ◽  
Liangui Peng ◽  
Yanxi Xie ◽  
Xiaoli Wang

In multi-strategy games, the increase in the number of strategies makes it difficult to make a solution. To maintain the competition advantage and obtain maximal profits, one side of the game hopes to predict the opponent’s behavior. Building a model to predict an opponent’s behavior is helpful. In this paper, we propose a rough set-game theory model (RS-GT) considering uncertain information and the opponent’s decision rules. The uncertainty of strategies is obtained based on the rough set method, and an accurate solution is obtained based on game theory from the rough set-game theory model. The players obtain their competitors’ decision rules to predict the opponents’ behavior by mining the information from repeated games in the past. The players determine their strategy to obtain maximum profits by predicting the opponent’s actions, i.e., adopting a first-mover or second-mover strategy to build a favorable situation. The result suggests that the rough set-game theory model helps enterprises avoid unnecessary losses and allows them to obtain greater profits.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Han-Yi Robert Chiu ◽  
Chun-Kai Hwang ◽  
Shey-Ying Chen ◽  
Fuh-Yuan Shih ◽  
Hsieh-Cheng Han ◽  
...  

AbstractEmerging infectious diseases (EIDs), including the latest COVID-19 pandemic, have emerged and raised global public health crises in recent decades. Without existing protective immunity, an EID may spread rapidly and cause mass casualties in a very short time. Therefore, it is imperative to identify cases with risk of disease progression for the optimized allocation of medical resources in case medical facilities are overwhelmed with a flood of patients. This study has aimed to cope with this challenge from the aspect of preventive medicine by exploiting machine learning technologies. The study has been based on 83,227 hospital admissions with influenza-like illness and we analysed the risk effects of 19 comorbidities along with age and gender for severe illness or mortality risk. The experimental results revealed that the decision rules derived from the machine learning based prediction models can provide valuable guidelines for the healthcare policy makers to develop an effective vaccination strategy. Furthermore, in case the healthcare facilities are overwhelmed by patients with EID, which frequently occurred in the recent COVID-19 pandemic, the frontline physicians can incorporate the proposed prediction models to triage patients suffering minor symptoms without laboratory tests, which may become scarce during an EID disaster. In conclusion, our study has demonstrated an effective approach to exploit machine learning technologies to cope with the challenges faced during the outbreak of an EID.


2022 ◽  
Vol 12 (1) ◽  
pp. 32
Author(s):  
Che-Cheng Chang ◽  
Jiann-Horng Yeh ◽  
Hou-Chang Chiu ◽  
Yen-Ming Chen ◽  
Mao-Jhen Jhou ◽  
...  

Myasthenia gravis (MG), an acquired autoimmune-related neuromuscular disorder that causes muscle weakness, presents with varying severity, including myasthenic crisis (MC). Although MC can cause significant morbidity and mortality, specialized neuro-intensive care can produce a good long-term prognosis. Considering the outcomes of MG during hospitalization, it is critical to conduct risk assessments to predict the need for intensive care. Evidence and valid tools for the screening of critical patients with MG are lacking. We used three machine learning-based decision tree algorithms, including a classification and regression tree, C4.5, and C5.0, for predicting intensive care unit (ICU) admission of patients with MG. We included 228 MG patients admitted between 2015 and 2018. Among them, 88.2% were anti-acetylcholine receptors antibody positive and 4.7% were anti-muscle-specific kinase antibody positive. Twenty clinical variables were used as predictive variables. The C5.0 decision tree outperformed the other two decision tree and logistic regression models. The decision rules constructed by the best C5.0 model showed that the Myasthenia Gravis Foundation of America clinical classification at admission, thymoma history, azathioprine treatment history, disease duration, sex, and onset age were significant risk factors for the development of decision rules for ICU admission prediction. The developed machine learning-based decision tree can be a supportive tool for alerting clinicians regarding patients with MG who require intensive care, thereby improving the quality of care.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 16
Author(s):  
Nuria Mollá ◽  
Alejandro Rabasa ◽  
Jesús J. Rodríguez-Sala ◽  
Joaquín Sánchez-Soriano ◽  
Antonio Ferrándiz

Data science is currently one of the most promising fields used to support the decision-making process. Particularly, data streams can give these supportive systems an updated base of knowledge that allows experts to make decisions with updated models. Incremental Decision Rules Algorithm (IDRA) proposes a new incremental decision-rule method based on the classical ID3 approach to generating and updating a rule set. This algorithm is a novel approach designed to fit a Decision Support System (DSS) whose motivation is to give accurate responses in an affordable time for a decision situation. This work includes several experiments that compare IDRA with the classical static but optimized ID3 (CREA) and the adaptive method VFDR. A battery of scenarios with different error types and rates are proposed to compare these three algorithms. IDRA improves the accuracies of VFDR and CREA in most common cases for the simulated data streams used in this work. In particular, the proposed technique has proven to perform better in those scenarios with no error, low noise, or high-impact concept drifts.


Author(s):  
Johannes Wiebe ◽  
Ruth Misener

AbstractThis paper introduces ROmodel, an open source Python package extending the modeling capabilities of the algebraic modeling language Pyomo to robust optimization problems. ROmodel helps practitioners transition from deterministic to robust optimization through modeling objects which allow formulating robust models in close analogy to their mathematical formulation. ROmodel contains a library of commonly used uncertainty sets which can be generated using their matrix representations, but it also allows users to define custom uncertainty sets using Pyomo constraints. ROmodel supports adjustable variables via linear decision rules. The resulting models can be solved using ROmodels solvers which implement both the robust reformulation and cutting plane approach. ROmodel is a platform to implement and compare custom uncertainty sets and reformulations. We demonstrate ROmodel’s capabilities by applying it to six case studies. We implement custom uncertainty sets based on (warped) Gaussian processes to show how ROmodel can integrate data-driven models with optimization.


2021 ◽  
Author(s):  
Mehran Poursoltani ◽  
Erick Delage

Although the stochastic optimization paradigm exploits probability theory to optimize the tradeoff between risk and returns, robust optimization has gained significant popularity by reducing computation requirements through the optimization of the worst-case scenario in a set. An appealing alternative to stochastic and robust optimization consists in optimizing decisions using the notion of regret. Although regret minimization models are generally perceived as leading to less conservative decisions than those produced by robust optimization, their numerical optimization is a real challenge in general. In “Adjustable Robust Optimization Reformulations of Two-Stage Worst-case Regret Minimization Problems,” M. Poursoltani and E. Delage show how to reduce a two-stage worst-case absolute/relative regret minimization problem to a two-stage robust optimization one. This opens the way for taking advantage of recent advanced approximate and exact solution schemes for these hard problems. Their experiments corroborate the high-quality performance of affine decision rules as a popular polynomial-time approximation scheme, from which, under mild conditions, one can even expect exact regret-averse decisions.


Sign in / Sign up

Export Citation Format

Share Document