scholarly journals Oracle-based algorithms for binary two-stage robust optimization

2020 ◽  
Vol 77 (2) ◽  
pp. 539-569
Author(s):  
Nicolas Kämmerling ◽  
Jannis Kurtz

Abstract In this work we study binary two-stage robust optimization problems with objective uncertainty. We present an algorithm to calculate efficiently lower bounds for the binary two-stage robust problem by solving alternately the underlying deterministic problem and an adversarial problem. For the deterministic problem any oracle can be used which returns an optimal solution for every possible scenario. We show that the latter lower bound can be implemented in a branch and bound procedure, where the branching is performed only over the first-stage decision variables. All results even hold for non-linear objective functions which are concave in the uncertain parameters. As an alternative solution method we apply a column-and-constraint generation algorithm to the binary two-stage robust problem with objective uncertainty. We test both algorithms on benchmark instances of the uncapacitated single-allocation hub-location problem and of the capital budgeting problem. Our results show that the branch and bound procedure outperforms the column-and-constraint generation algorithm.

Top ◽  
2021 ◽  
Author(s):  
Denise D. Tönissen ◽  
Joachim J. Arts ◽  
Zuo-Jun Max Shen

AbstractThis paper presents a column-and-constraint generation algorithm for two-stage stochastic programming problems. A distinctive feature of the algorithm is that it does not assume fixed recourse and as a consequence the values and dimensions of the recourse matrix can be uncertain. The proposed algorithm contains multi-cut (partial) Benders decomposition and the deterministic equivalent model as special cases and can be used to trade-off computational speed and memory requirements. The algorithm outperforms multi-cut (partial) Benders decomposition in computational time and the deterministic equivalent model in memory requirements for a maintenance location routing problem. In addition, for instances with a large number of scenarios, the algorithm outperforms the deterministic equivalent model in both computational time and memory requirements. Furthermore, we present an adaptive relative tolerance for instances for which the solution time of the master problem is the bottleneck and the slave problems can be solved relatively efficiently. The adaptive relative tolerance is large in early iterations and converges to zero for the final iteration(s) of the algorithm. The combination of this relative adaptive tolerance with the proposed algorithm decreases the computational time of our instances even further.


Author(s):  
Amir Ardestani-Jaafari ◽  
Erick Delage

In this article, we discuss an alternative method for deriving conservative approximation models for two-stage robust optimization problems. The method mainly relies on a linearization scheme employed in bilinear programming; therefore, we will say that it gives rise to the linearized robust counterpart models. We identify a close relation between this linearized robust counterpart model and the popular affinely adjustable robust counterpart model. We also describe methods of modifying both types of models to make these approximations less conservative. These methods are heavily inspired by the use of valid linear and conic inequalities in the linearization process for bilinear models. We finally demonstrate how to employ this new scheme in location-transportation and multi-item newsvendor problems to improve the numerical efficiency and performance guarantees of robust optimization.


Author(s):  
M. Paffrath ◽  
U. Wever

Purpose – The purpose of this paper is to present an efficient method for the numerical treatment of robust optimization problems with absolute reliability constraints. Design/methodology/approach – Optimization with anti-optimization based on response surface techniques; polynomial chaos for approximation of the stochastic objective function. Findings – The number of function calls is comparable to that of the corresponding deterministic problem. Thus, the method is well suited for complex technical systems. The performance of the method is demonstrated on an optimal design problem for turbochargers. Originality/value – The highlights of this paper are: algorithms for robust and deterministic problems show comparable complexity; no derivatives required; good convergence properties because of special set up of optimization problem; application in complex industrial examples.


2019 ◽  
Vol 12 (2) ◽  
pp. 193-224 ◽  
Author(s):  
Anirudh Subramanyam ◽  
Chrysanthos E. Gounaris ◽  
Wolfram Wiesemann

Abstract We study two-stage robust optimization problems with mixed discrete-continuous decisions in both stages. Despite their broad range of applications, these problems pose two fundamental challenges: (i) they constitute infinite-dimensional problems that require a finite-dimensional approximation, and (ii) the presence of discrete recourse decisions typically prohibits duality-based solution schemes. We address the first challenge by studying a K-adaptability formulation that selects K candidate recourse policies before observing the realization of the uncertain parameters and that implements the best of these policies after the realization is known. We address the second challenge through a branch-and-bound scheme that enjoys asymptotic convergence in general and finite convergence under specific conditions. We illustrate the performance of our algorithm in numerical experiments involving benchmark data from several application domains.


2021 ◽  
Author(s):  
Dimitris Bertsimas ◽  
Shimrit Shtern ◽  
Bradley Sturt

In “Two-Stage Sample Robust Optimization,” Bertsimas, Shtern, and Sturt investigate a simple approximation scheme, based on overlapping linear decision rules, for solving data-driven two-stage distributionally robust optimization problems with the type-infinity Wasserstein ambiguity set. Their main result establishes that this approximation scheme is asymptotically optimal for two-stage stochastic linear optimization problems; that is, under mild assumptions, the optimal cost and optimal first-stage decisions obtained by approximating the robust optimization problem converge to those of the underlying stochastic problem as the number of data points grows to infinity. These guarantees notably apply to two-stage stochastic problems that do not have relatively complete recourse, which arise frequently in applications. In this context, the authors show through numerical experiments that the approximation scheme is practically tractable and produces decisions that significantly outperform those obtained from state-of-the-art data-driven alternatives.


2019 ◽  
Vol 8 (4) ◽  
pp. 285
Author(s):  
LAILATUL RIZKIANA ◽  
NI KETUT TARI TASTRAWATI ◽  
NI LUH PUTU SUCIPTAWATI

Bali is one of the regions in Indonesia which is famous for its tourism. Vacationing in Bali seems to be a must for every tourist, both domestic and foreign tourists. For tourists who are on vacation many things are considered be it time, distance, cost and others. Travel time with a distance that is already known is something that can not be estimated with certainty, given the many factors that influence including traffic conditions, weather, or road infrastructure. Robust optimization is one area of ??optimization that solves problems with uncertainty which in this study uses a box uncertainty set approach. Optimization problems can be solved by a branch and bound algorithm, the results obtained in the form of tourist attraction routes should be chosen with a minimum time and influenced by indefinite factors.


Author(s):  
Ayşe N. Arslan ◽  
Boris Detienne

In this paper, we study a class of two-stage robust binary optimization problems with objective uncertainty, where recourse decisions are restricted to be mixed-binary. For these problems, we present a deterministic equivalent formulation through the convexification of the recourse-feasible region. We then explore this formulation under the lens of a relaxation, showing that the specific relaxation we propose can be solved by using the branch-and-price algorithm. We present conditions under which this relaxation is exact and describe alternative exact solution methods when this is not the case. Despite the two-stage nature of the problem, we provide NP-completeness results based on our reformulations. Finally, we present various applications in which the methodology we propose can be applied. We compare our exact methodology to those approximate methods recently proposed in the literature under the name [Formula: see text]adaptability. Our computational results show that our methodology is able to produce better solutions in less computational time compared with the [Formula: see text]adaptability approach, as well as to solve bigger instances than those previously managed in the literature. Summary of Contribution: Our manuscript describes an exact solution approach for a class of robust binary optimization problems with mixed-binary recourse and objective uncertainty. Its development reposes first on a reformulation of the problem, then a carefully constructed relaxation of this reformulation. Our solution approach is designed to exploit the two-stage and binary structure of the problem for effective resolution. In its execution, it relies on the branch-and-price algorithm and its efficient implementation. With our computational experiments, we show that our proposed exact solution method outperforms the existing approximate methodologies and, therefore, pushes the computational envelope for the class of problems considered.


Sign in / Sign up

Export Citation Format

Share Document