Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model

2013 ◽  
Vol 17 (2) ◽  
pp. 431-442 ◽  
Author(s):  
E. Marchand ◽  
T. Müller ◽  
P. Knabner
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed F. El-Amin ◽  
Ahmed M. Saad ◽  
Amgad Salama ◽  
Shuyu Sun

In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including water-nanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.


2002 ◽  
Vol 1 (2) ◽  
pp. 09
Author(s):  
J. C. Da Mota ◽  
A. J. De Souza ◽  
D. Marchesin ◽  
P. W. Teixeira

This paper describes a simplified mathematical model for thermal recovery by oxidation for flow of oxygen and oil in porous media. Some neglected important physical effects include gravity, compressibility and heat loss to the rock formation, but heat longitudinal conduction and capillary pressure difference between the phases are considered. The mathematical model is obtained from the mass balance equations for air and oil, energy balance and Darcy's law applied to each phase. Based on this model some typical features in low temperature oxidation concerning the wave structure are captured. Numerical simulations showing saturations and temperature profiles are reported.


2002 ◽  
Vol 1 (2) ◽  
Author(s):  
J. C. Da Mota ◽  
A. J. De Souza ◽  
D. Marchesin ◽  
P. W. Teixeira

This paper describes a simplified mathematical model for thermal recovery by oxidation for flow of oxygen and oil in porous media. Some neglected important physical effects include gravity, compressibility and heat loss to the rock formation, but heat longitudinal conduction and capillary pressure difference between the phases are considered. The mathematical model is obtained from the mass balance equations for air and oil, energy balance and Darcy's law applied to each phase. Based on this model some typical features in low temperature oxidation concerning the wave structure are captured. Numerical simulations showing saturations and temperature profiles are reported.


2019 ◽  
Vol 51 (3) ◽  
pp. 2019-2052
Author(s):  
Mladen Jurak ◽  
Ivana Radišić ◽  
Ana Žgaljić Keko

Sign in / Sign up

Export Citation Format

Share Document