thermal recovery
Recently Published Documents


TOTAL DOCUMENTS

700
(FIVE YEARS 139)

H-INDEX

31
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
Wu Zhiqiang ◽  
Liu Hengjie ◽  
Qu Xiong ◽  
Wu Guangai ◽  
Xing Xuesong ◽  
...  

During the thermal recovery of heavy oil thermal recovery wells, improving the mechanical properties and integrity of the cement ring is of great significance for the safe and efficient exploitation of heavy oil resources. This paper studies the relative properties of calcium aluminate cement and three kinds of slags under the conditions of 50°C × 1.01 MPa and 315°C × 20.7 MPa. CAC-slag composite material performance was evaluated using the cement paste compressive strength and permeability tests to study the physical properties of CAC with blast furnace slag. X-ray diffraction analysis, scanning electron microscopy (SEM), and thermal analysis (DSC/TG) were carried out to investigate the mineralogical composition of CAC with blast furnace slag. Results show that adding blast furnace slag did not affect the performance of cement slurry. Moreover, C2ASH8 curing occurred at low temperature, the microstructure of CAC paste was compact, and the permeability resistance was improved, thus improving the low-temperature properties of neat CAC. When cured at a high temperature, the CAC paste was mainly hydrated with C3ASH4 and AlO(OH), which had a well-developed crystal structure. Adding blast furnace slag can improve the CAC resistance to high temperature.


2022 ◽  
Author(s):  
Adjele Wilson ◽  
Elena A. Andreeva ◽  
Stanislaw Nizinski ◽  
Lea Talbot ◽  
Elisabeth Hartmann ◽  
...  

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCPs studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and the time scales on which these modifications affect photoactivation. The presence of a His-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


Author(s):  
Lei Li ◽  
Jin Yang ◽  
Xin Zou ◽  
Lixin Jia ◽  
Changchao Zhang ◽  
...  

2021 ◽  
Author(s):  
Sameeh Batarseh ◽  
Damian San Roman Alerigi ◽  
Abdullah Al Harith ◽  
Wisam Assiri

Abstract This study evaluates physical and chemical changes induced by high thermal gradients on the formation and their impact to the stability. The heat sources that effect the formation’s stability are varied, including drilling (due to drilling bit friction), perforation, electromagnetic heating (laser or microwave), and thermal recovery or stimulation (steam, resistive heating, combustion, microwave, etc.). This study uses an integrated approach to characterize rock heterogeneity and mapping heat propagation from different heat sources. The information obtained from the study is vital to accurately design and enhance well completion and stimulation This is an integrated analysis approach combining different advanced characterization and visualization techniques to map heat propagation in the formation. Advanced statistical analysis is also used to determine the key parameters and build fundamental prediction algorithms. Characterization on the samples was performed before, during, and after the exposure to thermal sources; it comprised thin-section, high speed infrared thermography (IR), differential thermal analysis and thermogravimetric analyzer (DTA/TGA), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF), uniaxial stress, and autoscan (provide hardness, composition, velocity, and spectral absorption). The results are integrated, and machine learning is used to derive a predictive algorithm of heat propagation and mapping in the formation with reference to the key formation variables and heterogeneity distribution. Rock heterogeneity affects the rate and patterns of heat propagation into the formation. Within the rock sample, minerals, laminations, and cementations lead to a heterogeneous, and sometimes anisotropic, distribution of thermal properties (thermal conductivity, heat capacity, diffusivity, etc.). These properties are also affected by the rock structure (porosity, micro-cracks, and fractures) and saturation distribution. The results showed the impact of heat on the mechanical properties of the rocks are due to clays dehydration, mineral dissociations, and micro cracks. High speed thermal imaging provides a unique visualization of heat propagation in heterogeneous rocks. Statistical analysis identified key parameters and their impact on thermal propagation; the output was used to build a machine learning algorithm to predict heat distributions in core samples and near-wellbore. Characterizing rock properties and understanding how heterogeneity modifies heat propagation in rocks enables the design of optimal completion and stimulation strategies. This paper discusses how advanced characterization and analysis, combined with novel algorithms, can improve this understanding, and unleash innovation and optimization. The data and information gathered are critical to develop numerical models for field-scale applications.


2021 ◽  
Author(s):  
Ryan Santoso ◽  
Xupeng He ◽  
Marwa Alsinan ◽  
Ruben Figueroa Hernandez ◽  
Hyung Kwak ◽  
...  

Abstract History matching is a critical step within the reservoir management process to synchronize the simulation model with the production data. The history-matched model can be used for planning optimum field development and performing optimization and uncertainty quantifications. We present a novel history matching workflow based on a Bayesian framework that accommodates subsurface uncertainties. Our workflow involves three different model resolutions within the Bayesian framework: 1) a coarse low-fidelity model to update the prior range, 2) a fine low-fidelity model to represent the high-fidelity model, and 3) a high-fidelity model to re-construct the real response. The low-fidelity model is constructed by a multivariate polynomial function, while the high-fidelity model is based on the reservoir simulation model. We firstly develop a coarse low-fidelity model using a two-level Design of Experiment (DoE), which aims to provide a better prior. We secondly use Latin Hypercube Sampling (LHS) to construct the fine low-fidelity model to be deployed in the Bayesian runs, where we use the Metropolis-Hastings algorithm. Finally, the posterior is fed into the high-fidelity model to evaluate the matching quality. This work demonstrates the importance of including uncertainties in history matching. Bayesian provides a robust framework to allow uncertainty quantification within the reservoir history matching. Under uniform prior, the convergence of the Bayesian is very sensitive to the parameter ranges. When the solution is far from the mean of the parameter ranges, the Bayesian introduces bios and deviates from the observed data. Our results show that updating the prior from the coarse low-fidelity model accelerates the Bayesian convergence and improves the matching convergence. Bayesian requires a huge number of runs to produce an accurate posterior. Running the high-fidelity model multiple times is expensive. Our workflow tackles this problem by deploying a fine low-fidelity model to represent the high-fidelity model in the main runs. This fine low-fidelity model is fast to run, while it honors the physics and accuracy of the high-fidelity model. We also use ANOVA sensitivity analysis to measure the importance of each parameter. The ranking gives awareness to the significant ones that may contribute to the matching accuracy. We demonstrate our workflow for a geothermal reservoir with static and operational uncertainties. Our workflow produces accurate matching of thermal recovery factor and produced-enthalpy rate with physically-consistent posteriors. We present a novel workflow to account for uncertainty in reservoir history matching involving multi-resolution interaction. The proposed method is generic and can be readily applied within existing history-matching workflows in reservoir simulation.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhaopeng Yang ◽  
Xingmin Li ◽  
Yang Yu ◽  
Jia Xie ◽  
Yintao Dong

The purpose of this study is to determine the optimal conversion timing of follow-up thermal recovery approaches of post-CHOP for foamy extraheavy oil reservoirs. The microscopic visualization experiment and the one-dimensional sand pack experiment are conducted to investigate the influence of temperature on the foamy oil cold production process. According to the experimental results, it can be concluded that the temperature has great influence on foamy oil flow stage during the CHOP process. Therefore, it is necessary to study the optimal conversion timing of follow-up thermal recovery approaches after CHOP for the foamy extraheavy oil reservoir. Based on the analysis of the experimental results, the compositional foamy oil model is established by taking the effect of temperature into consideration. In the numerical model, the conversion timings of different thermal recovery approaches are investigated. The optimal conversion timings for cyclic steam stimulation (CSS) and steam flooding (SF) processes are the moments when the pressure drops to the pseudo-bubble point pressure. For the CSS method, excessive pressure cannot give full play to the production potential of CHOP stage; when the pressure is too low, it lacks enough energy to drive the heated crude oil to the wellbore. For the SF method, high pressure cannot fully release the latent heat of steam, and the content of dissolved gas (which will hinder the heat transfer) in oil phase is higher under high pressure, while the very low pressure leads to relatively high viscosity of crude oil; thus, the performance of the SF process becomes worse. For the SAGD process, the adverse effects of released solution gas in foamy extraheavy oil reservoir outweigh the positive effects. As a result, the CHOP period should be extended as long as possible to obtain a high recovery. In other words, the recovery process should be switched to the SAGD process at a relatively low formation pressure. The findings of this study could help for better understanding of the CHOP and post-CHOP thermal techniques for foamy extraheavy oil reservoirs, and it can provide guidance for reservoir engineers to make better use of the thermal recovery techniques to further improve the recovery performance of foamy extraheavy oil reservoirs.


2021 ◽  
Author(s):  
Ubedullah Ansari ◽  
Najeeb Anjum Soomro ◽  
Farhan Ali Narejo ◽  
Shafquat Ali Baloch ◽  
Faiz Ali Talpur

Abstract The middle eastern countries including United Arab Emirates (UAE) have enjoyed the energy production from hydrocarbon resource for a very long period. Indeed, now various countries in this region has shifted to alternative resources of power generation with cheaper and cleaner sources. Geothermal is the top of the list among those sources. Therefore, this study presents an ultimate model converting abandoned oil and gas wells into subsurface geothermal recovery points. Fundamentally, this study offers a geo-thermo-mechanical model of abandoned wellbore which can help in developing an optimistic geothermal energy not only from subsurface thermal reserve but also from abandoned casing and pipes installed in Wellbores. In this approach the source of heat is thermally active rock formations and the metallic pipes that are present in wellbores drilled through hot dry rocks. In the model the already drilled wells are incorporated as medium of heat flow in which water in injected and brought back to surface along with thermal impact. The results of this study revealed that, at the depth of 6000 m of high temperature wellbore the temperature is above 85°C and at this temperature the metallic casings further rise the reserve temperature thus the conversion of water into steam can be processed easily. Moreover, at high depths the stability of wellbore is also issue in high temperature formation, so mechanical model suggests that injection of water and conversion into steam in already cased wellbore can sustain up to 6 MPa stress at around 100C. Thus, the geo-thermo-mechanical model of wellbore will illustrate the possibility of converting water into steam and it will also reveal the average amount of heat that can be generated from a single well. henceforth, the thermal recovery from abandoned wells of UAE is best fit solution for clean energy. The abandoned wells are used as conduit to transport heat energy from subsurface by using water as transport medium, as water at surface temperature is injected in those wellbores and let thermal energy convert that water into steam. Later the steam is returned to surface and used as fuel in turbines or generators.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2226
Author(s):  
Long Wang ◽  
Yang Li ◽  
Zhandong Li ◽  
Yikun Liu ◽  
Laiming Song ◽  
...  

It was deemed important to calculate the thermal recovery production model of tight oil reservoirs after fracturing and packing based on the field data of an oilfield in Bohai Sea, China. The thermal recovery production of a tight oil reservoir after fracturing is demonstrated through theoretical calculation and practical field data on the premise of five hypotheses. Fractures change the fluid flow capacity of the reservoir. Combined with the relevant theories of reservoir thermal production, the dual porosity system in the fractured zone and the single porosity system in the unfractured zone were established. The calculation models of heat loss in the fractured and unfractured zones were derived to determine the thermal recovery heating radius of the reservoir after fracturing and packing. Combined with the pseudo-steady state productivity formula of the composite reservoir, a production calculation model of thermal recovery after fracturing and packing in the tight oil reservoir was established. The results showed that the heating radius of the reservoir after fracturing and packing is smaller than that of the unfractured reservoir, and the additional heat absorption of the fracture system generated by fracturing and packing reduces the thermal recovery effect. The thermal recovery productivity of heavy oil reservoirs is mainly affected by the heating radius. With the increase of fracture density, the heating radius decreases and production decreases. The increase of fracture porosity also leads to the decrease of the heating radius and the production. The calculation result of this model is improved after tight oil reservoir fracturing during the production period, which indicates that the model has a better prediction effect of the production of the tight reservoir after fracturing and packing.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8279
Author(s):  
Silviya Boycheva ◽  
Ivan Marinov ◽  
Denitza Zgureva-Filipova

At present, mitigating carbon emissions from energy production and industrial processes is more relevant than ever to limit climate change. The widespread implementation of carbon capture technologies requires the development of cost-effective and selective adsorbents with high CO2 capture capacity and low thermal recovery. Coal fly ash has been extensively studied as a raw material for the synthesis of low-cost zeolite-like adsorbents for CO2 capture. Laboratory tests for CO2 adsorption onto coal fly ash zeolites (CFAZ) reveal promising results, but detailed computational studies are required to clarify the applicability of these materials as CO2 adsorbents on a pilot and industrial scale. The present study provides results for the validation of a simulation model for the design of adsorption columns for CO2 capture on CFAZ based on the experimental equilibrium and dynamic adsorption on a laboratory scale. The simulations were performed using ProSim DAC dynamic adsorption software to study mass transfer and energy balance in the thermal swing adsorption mode and in the most widely operated adsorption unit configuration.


Sign in / Sign up

Export Citation Format

Share Document