scholarly journals Correction to: Employing singular value decomposition and similarity criteria for alleviating cold start and sparse data in context-aware recommender systems

Author(s):  
Keyvan Vahidy Rodpysh ◽  
Seyed Javad Mirabedini ◽  
Touraj Banirostam
2021 ◽  
Author(s):  
Kirubahari R ◽  
Miruna Joe Amali S

Abstract Recommender Systems (RS) help the users by showing better products and relevant items efficiently based on their likings and historical interactions with other users and items. Collaborative filtering is one of the most powerful technique of recommender system and provides personalized recommendation for users by prediction rating approach. Many Recommender Systems generally model only based on user implicit feedback, though it is too challenging to build RS. Conventional Collaborative Filtering (CF) techniques such as matrix decomposition, which is a linear combination of user rating for an item with latent features of user preferences, but have limited learning capacity. Additionally, it has been suffering from data sparsity and cold start problem due to insufficient data. In order to overcome these problems, an integration of conventional collaborative filtering with deep neural networks is proposed. A Weighted Parallel Deep Hybrid Collaborative Filtering based on Singular Value Decomposition (SVD) and Restricted Boltzmann Machine (RBM) is proposed for significant improvement. In this approach a user-item relationship matrix with explicit ratings is constructed. The user - item matrix is integrated to Singular Value Decomposition (SVD) that decomposes the matrix into the best lower rank approximation of the original matrix. Secondly the user-item matrix is embedded into deep neural network model called Restricted Boltzmann Machine (RBM) for learning latent features of user- item matrix to predict user preferences. Thus, the Weighted Parallel Deep Hybrid RS uses additional attributes of user - item matrix to alleviate the cold start problem. The proposed method is verified using two different movie lens datasets namely, MovieLens 100K and MovieLens of 1M and evaluated using Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results indicate better prediction compared to other techniques in terms of accuracy.


2021 ◽  
Author(s):  
Shalin Shah

Recommender systems aim to personalize the experience of user by suggesting items to the user based on the preferences of a user. The preferences are learned from the user’s interaction history or through explicit ratings that the user has given to the items. The system could be part of a retail website, an online bookstore, a movie rental service or an online education portal and so on. In this paper, I will focus on matrix factorization algorithms as applied to recommender systems and discuss the singular value decomposition, gradient descent-based matrix factorization and parallelizing matrix factorization for large scale applications.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 11349-11359 ◽  
Author(s):  
Xing Guo ◽  
Shi-Chao Yin ◽  
Yi-Wen Zhang ◽  
Wei Li ◽  
Qiang He

Author(s):  
Taushif Anwar ◽  
V. Uma ◽  
Gautam Srivastava

In recommender systems, Collaborative Filtering (CF) plays an essential role in promoting recommendation services. The conventional CF approach has limitations, namely data sparsity and cold-start. The matrix decomposition approach is demonstrated to be one of the effective approaches used in developing recommendation systems. This paper presents a new approach that uses CF and Singular Value Decomposition (SVD)[Formula: see text] for implementing a recommendation system. Therefore, this work is an attempt to extend the existing recommendation systems by (i) finding similarity between user and item from rating matrices using cosine similarity; (ii) predicting missing ratings using a matrix decomposition approach, and (iii) recommending top-N user-preferred items. The recommender system’s performance is evaluated considering Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). Performance evaluation is accomplished by comparing the systems developed using CF in combination with six different algorithms, namely SVD, SVD[Formula: see text], Co-Clustering, KNNBasic, KNNBaseline, and KNNWithMeans. We have experimented using MovieLens 100[Formula: see text]K, MovieLens 1[Formula: see text]M, and BookCrossing datasets. The results prove that the proposed approach gives a lesser error rate when cross-validation ([Formula: see text]) is performed. The experimental results show that the lowest error rate is achieved with MovieLens 100[Formula: see text]K dataset ([Formula: see text], [Formula: see text]). The proposed approach also alleviates the sparsity and cold-start problems and recommends the relevant items.


2019 ◽  
Vol 2 (1) ◽  
pp. 22-34
Author(s):  
Sukanya Patra ◽  
Boudhayan Ganguly

Online recommender systems are an integral part of e-commerce. There are a plethora of algorithms following different approaches. However, most of the approaches except the singular value decomposition (SVD), do not provide any insight into the underlying patterns/concepts used in item rating. SVD used underlying features of movies but are computationally resource-heavy and performs poorly when there is data sparsity. In this article, we perform a comparative study among several pre-processing algorithms on SVD. In the experiments, we have used the MovieLens 1M dataset to compare the performance of these algorithms. KNN-based approach was used to find out K-nearest neighbors of users and their ratings were then used to impute the missing values. Experiments were conducted using different distance measures, such as Jaccard and Euclidian. We found that when the missing values were imputed using the mean of similar users and the distance measure was Euclidean, the KNN-based (K-Nearest Neighbour) approach of pre-processing the SVD was performing the best. Based on our comparative study, data managers can choose to employ the algorithm best suited for their business.


Sign in / Sign up

Export Citation Format

Share Document