Adaptive multi-scale beam lattice method for competitive trans-scale crack growth simulation of heterogeneous concrete-like materials

2021 ◽  
Vol 228 (1) ◽  
pp. 85-101
Author(s):  
Bin Sun
2021 ◽  
Vol 246 ◽  
pp. 107617
Author(s):  
V. Shlyannikov ◽  
R. Yarullin ◽  
M. Yakovlev ◽  
V. Giannella ◽  
R. Citarella

Author(s):  
Takehisa Yamada ◽  
Mitsuru Ohata

Abstract The aim of this study is to propose damage model on the basis of the mechanism for ductile fracture related to void growth and to confirm the applicability of the proposed model to ductile crack growth simulation for steel. To figure out void growth behavior, elasto-plastic finite element analyses using unit cell model with an initial void were methodically performed. From the results of those analyses, it was evident that the relationships between normalized void volume fraction and normalized strain by each critical value corresponding to crack initiation were independent of stress-strain relationship of material and stress triaxiality state. Based on this characteristic associated with void growth, damage evolution law was derived. Then, using the damage evolution law, simple and phenomenological ductile damage model reflecting void growth behavior and ductility of material was proposed. To confirm the validation and application of proposed damage model, the damage model was implemented in finite element models and ductile crack growth resistance was simulated for cracked components were performed. Then, the simulated results were compared with experimental ones and it was found that the proposed damage model could accurately predict ductile crack growth resistance and was applicable to ductile crack growth simulation.


Sign in / Sign up

Export Citation Format

Share Document