engine compressor
Recently Published Documents


TOTAL DOCUMENTS

231
(FIVE YEARS 51)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Alessandro Vulpio
Keyword(s):  

2021 ◽  
Vol 11 (19) ◽  
pp. 9248
Author(s):  
Fan Lei ◽  
Chuhua Zhang

Aero-engine core compressor preliminary design strategy has been successfully applied to the advanced design of gas turbines compressors. However, few researchers have addressed the application of the aero-engine core compressor preliminary design strategy in the preliminary optimal design of industrial process compressors. Here we embedded the aero-engine core compressor preliminary design strategy into a preliminary optimal design method, in which six types of design parameters widely used to define the aero-engine compressor configuration, i.e., aspect ratio, solidity, reaction, rotation speed, outlet axial Mach number, and inlet radius ratio, were used as the design variables. The 4-stage, 5-stage, 6-stage, and 7-stage compressor configuration with the same overall design requirements for a large-scale air separation main compressor were preliminarily optimized by the developed method, in which the 4-stage design has a stage pressure rise level of current aero-engine core compressors, whereas the 7-stage design has that of current industrial process compressors. The optimized compressor configurations were then refined with the throughflow-based detailed design method and finally verified with computational fluid dynamic simulations. It is found that the developed method can optimize design efficiency and accurately predict aerodynamic performance of compressors in a few minutes. Several design guidelines for the advanced industrial process compressors were also identified. This work is of significance in extending aero-engine core compressor design strategy to the design of advanced industrial process compressors.


2021 ◽  
Vol 16 ◽  
pp. 120-126
Author(s):  
A. A. Orekhov ◽  
E. V. Shemetova ◽  
Yan Naing Min

For the first time, using the technology of selective laser sintering, prototypes of rocket engine compressor blades were manufactured with subsequent analysis of the strength, technological, physical and mechanical characteristics of the product. The physical and mechanical properties of the manufactured blades were investigated, it was found that the short-term strength limit at 20 °C is 1450 MPa, and at 300 °C the ultimate strength is 1300 MPa, thus thermal losses in deformation resistance are no more than 12%, which allows the material to be used in aircraft construction, including for supersonic aircraft


2021 ◽  
Author(s):  
Dario Luberti ◽  
Marios Patinios ◽  
Richard Jackson ◽  
Hui Tang ◽  
Oliver Pountney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document