Mode-II interlaminar fracture of composite materials in the presence of randomly distributed defects

Author(s):  
Rajesh S. Kumar
2018 ◽  
Vol 7 (3.17) ◽  
pp. 129
Author(s):  
Rozli Zulkifl ◽  
Che Husna Azhari

Composite materials have a wide range of applications including as an automotive components. In certain applications it is exposed to various heat conditions and might affect its mechanical properties. It is important to be able to predict the behavior of the composites under different temperature settings in order to prevent failure. The GIIC properties of composite epoxy laminate with silk fibre at various temperatures have yet to be investigated by any researcher. This study was carried out to analyse the Mode II interlaminar fracture properties, GIIC of the silk fibre / epoxy composite materials when treated with silane coupling agents at different test temperatures. This property is important since it provides the measure of the material’s resistance to delamination crack propagation. Composite specimens were produced using compression moulding technique with sixteen layers of silk fabric. The matrix is an epoxy D.E.R 331 and Hardener Joint mine 905-3S. The weight ratio of mixing epoxy and hardener is 2:1. Six sets of sample were prepared using silk fibre which has undergone surface treatment for 24 hour using silane coupling agent surface treatment solution. Specimens were tested by Instron Universal Testing Machine using a three-point bending based on an end notched flexural (ENF) method. The tests were carried out at six different temperatures which are at 20 oC, 23 oC, 26 oC, 38 oC, 50 oC and 75 oC. The temperature of the specimens during testing was monitored using a thermal imager in order determine the exact test temperature. It was found that as the temperatures increases, the mode II fracture toughness decreases by up to 71%. The length of crack propagation shows that higher temperature leads to longer crack length. This could be due to the residual tension between the fibre and matrix as they have different thermal coefficient of expansion.     


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


Sign in / Sign up

Export Citation Format

Share Document