pure mode
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 54)

H-INDEX

23
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7753
Author(s):  
Enzo Martinelli ◽  
Antonio Caggiano

This paper aims at further advancing the knowledge about the cyclic behavior of FRP strips glued to quasi-brittle materials, such as concrete. The results presented herein derive from a numerical model based on concepts of based on fracture mechanics and already presented and validated by the authors in previous works. Particularly, it assumes that fracture processes leading to debonding develop in pure mode II, as is widely accepted in the literature. Starting from this assumption (and having clear both its advantages acnd shortcomings), the results of a parametric analysis are presented with the aim of investigating the role of both the mechanical properties of the interface bond–slip law and a relevant geometric quantity such as the bond length. The obtained results show the influence of the interface bond–slip law and FRP bond length on the resulting cyclic response of the FRP-to-concrete joint, the latter characterized in terms of S-N curves generally adopted in the theory of fatigue. Far from deriving a fully defined correlation among those parameters, the results indicate general trends that can be helpful to drive further investigation, both experimental and numerical in nature.


2021 ◽  
Author(s):  
Chaochao Yang ◽  
Jin Meng ◽  
Haitao Wang ◽  
Danni Zhu ◽  
Yuzhang Yuan ◽  
...  

Abstract The radial transit time oscillator (RTTO) has attracted much attention because of its high power capacity and pure mode of output microwave. To make the high power microwave (HPM) source devices more compact and to enable it to measure the output microwave mode quantitatively, this paper proposed a compact Ku-band RTTO with the power divider extraction structure (PDES). The radial decreasing magnetic field is applied to decreasing the mass of excitation system. Compared the conventional uniform solenoids, it can reduce the mass by about 30%. In the coaxial output waveguide, the PDES is used instead of the traditional support rods connecting the inner and outer conductors so as to convert TEM mode into TE10 mode efficiently. This structure can not only help shorten the axial dimension of the device, but also make it possible to measure the output microwave mode more accurately online. In particle-in-cell (PIC) simulation, the proposed Ku-band RTTO can output HPMs with the power of 3.05 GW and the frequency of 14.36 GHz, and the working efficiency is 40.3%. The maximum radial electric field intensity in the extraction cavity is 0.92 MV/cm, and the maximum electric field intensity in the PDES is 0.52 MV/cm, both of which are lower than the radio frequency (RF) breakdown threshold of metal materials.


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 3017
Author(s):  
Robab Bahadori ◽  
Majid Reza Ayatollahi ◽  
Sergio Cicero ◽  
José Alberto Álvarez

This paper gathers experimental and theoretical investigations about both the geometry-dependent fracture initiation angle and the fracture strength in VO-notched polymethyl methacrylate (PMMA) specimens under mode I loading conditions. The numerical analyses revealed that despite the application of pure mode I loading on the geometrically symmetric VO-notched samples, the maximum tangential stress occurs at two points symmetrically placed on either side of the notch bisector line. The experimental tests performed on some specimens showed that a crack does not necessarily propagate along the notch bisector line. Stress-based theoretical studies were then carried out to justify the experimental findings. The conventional maximum tangential stress (MTS) criterion gave weak predictions of the fracture. Therefore, the predictions were checked with the generalized MTS (GMTS) criterion by taking into consideration the higher-order stress terms. It was demonstrated that the GMTS criterion predictions have satisfactory consistency with the experimental results of the crack initiation angle and the fracture strength.


2021 ◽  
Vol 11 (11) ◽  
pp. 5232
Author(s):  
Mohammad Reza Mohammad Aliha ◽  
Hadi Ghesmati Kucheki ◽  
Mirmilad Mirsayar

Until now, some test specimens with different shapes and loading mechanisms have been utilized for investigating the cracking behavior of adhesive bounded joints. In this research, using a novel test configuration called adhesive short bend beam specimen containing an inclined crack and loaded by three-point bending, mixed mode I/II fracture parameters of a crack initiated in the adhesive part is studied. Compared to other test methods, the specimen used in this research needs a lesser amount of material and the fracture test can be performed easily. A large number of finite element models of this specimen were analyzed using ABAQUS code to study the effect of adhesive and adherent type, and also the crack length and loading span distance on KI, KII, T-stress and fracture initiation direction under different mode mixities. The results showed that the fracture parameters (and in particular the shear mode component) are sensitive to the type and location of adherent in the bounded joint; however, the shape and size of fracture plastic zone is not affected noticeably by the type of adhesive-adherent materials. It was also shown that the complete mode mixities ranging from pure mode I to pure mode II can be introduced for adhesive bounded joints using the proposed test specimen and therefore the specimen is a good candidate test configuration for investigating the mixed mode I/II fracture behavior of adhesive bounded joints.


2021 ◽  
Vol 107 ◽  
pp. 102826
Author(s):  
M. Moazzami ◽  
M.R. Ayatollahi ◽  
S. Teixeira de Freitas ◽  
L.F.M. da Silva

2021 ◽  
Vol 11 (11) ◽  
pp. 5094
Author(s):  
Dayong Yang ◽  
Hamid Reza Karimi ◽  
Mohammad Reza Mohammad Aliha

As an inherent characteristic of materials, the fracture toughness is an important parameter to study the cracking behavior of asphalt concrete mixtures. Although material compositions and environmental conditions have a significant effect on the fracture toughness, for a certain material and testing environment, the test condition including the specimen configuration and loading type may also affect the obtained fracture toughness. In this paper, the effect of specimen configuration and applied loading type on the measured pure mode-I fracture toughness (KIc) is investigated. In order to achieve this purpose, using a typical asphalt mixture, four different test specimens including Semi-Circular Bend (SCB), Edge Notch Disc Bend (ENDB), Single Edge Notch Beam (SENB) and Edge Notch Diametral Compression (ENDC) disc are tested under pure mode I. The mentioned specimens have different shapes (i.e., full disc, semi-disc and rectangular beam) and are loaded either with symmetric three-point bending or diametral compressive force. The tests were performed at two low temperatures (−5 °C and −25 °C) and it was observed that the critical mode-I fracture toughness (KIc) was changed slightly (up to 10%) by changing the shape of the test specimen (i.e., disc and beam). This reveals that the fracture toughness is not significantly dependent on the shape of the test specimen. However, the type of applied loading has a significant influence on the determined mode I fracture toughness such that the fracture toughness determined by the disc shape specimen loaded by diametral compression (i.e., ENDC) is about 25% less than the KIc value with the same geometry but loaded with the three-point bending (i.e., ENDB) specimen. In addition, the fracture toughness values of all tested samples were increased linearly by decreasing the test temperature such that the fracture toughness ratio (KIc (@-25 °C)/KIc (@-5 °C)) was nearly constant for the ENDB, ENDC, SCB and SENB samples.


Geophysics ◽  
2021 ◽  
pp. 1-82
Author(s):  
Alexey Stovas ◽  
Yuriy Roganov ◽  
Vyacheslav Roganov

In an elastic model with orthorhombic symmetry, there are nine independent stiffness coefficients that control the propagation of all intrinsically coupled wave modes. For practical applications in P-wave modeling and inversion, it is important to derive the approximate solutions that support propagation of P waves only and depends on fewer independent parameters. Due to the increasing interest in shear-wave propagation in anisotropic media, we also derive an approximate equation that supports propagation of S waves only. However, the reduction in number of independent parameters for the S wave equation is not possible. We derive pure P and S wave equations in an elastic orthorhombic model and show that the accuracy is sufficient for practical applications.


2021 ◽  
Author(s):  
Ali (Mike) Matinmanesh

Bioactive glasses have been used experimentally as coatings for medical implants because of their good osseointegration properties and ability to inhibit bacterial proliferation. However, the available literature lacks quantitative studies for characterizing their mechanical properties. This research postulates two fracture mechanics testing methodologies that facilitate measuring the nearly pure mode I (opening) and mode II (shearing) critical strain energy release rate (GIC, GIIC) of the coating/substrate system. Using these methodologies, the effects of coating thickness, glass composition and degradation on the GIC and GIIC of the system were evaluated. The developed mode I testing methodology was applied on a silicate bioactive glass/Ti6Al4V substrate system and it was found that increasing the coating thickness from 90 to 390 μm, decreased the measured GIC of the system significantly, from 6.2 to 2.5 J/m2. This decrease was found to be due to the increase in the residual stresses in the thicker coatings. The mode I testing methodology was then applied on two series of silica-based and borate-based glass coating, with increasing amounts of TiO2 incorporated, and it was observed that an increase in the content of TiO2 in the glasses resulted in an increase in the GIC for both the bulk glass and for the coating/substrate system. The borate-based series was found to have a closer CTE to the substrate compared to the silica counterpart, suggesting that use of such glasses as coatings can minimize the chances of delamination and cracking. Incorporating SrCO3 in a series of borate bioactive glass coating also proved to significantly increase the GIC and GIIC of the system. In order to study the effect of degradation, the borate bioactive glass coatings on Ti6Al4V substrates were immersed in deionized water for different time periods, dried and tested. It was found that after 17% weight loss of the glass, the GIC and GIIC of the coating/substrate system for all compositions decreased by at least 80%.


Sign in / Sign up

Export Citation Format

Share Document