scholarly journals Equivariant, locally finite inverse representations with uniformly bounded zipping length, for arbitrary finitely presented groups

2013 ◽  
Vol 167 (1) ◽  
pp. 91-121 ◽  
Author(s):  
Valentin Poénaru
2019 ◽  
Vol 150 (3) ◽  
pp. 1139-1154
Author(s):  
Thiebout Delabie ◽  
Ana Khukhro

AbstractWe use a coarse version of the fundamental group first introduced by Barcelo, Kramer, Laubenbacher and Weaver to show that box spaces of finitely presented groups detect the normal subgroups used to construct the box space, up to isomorphism. As a consequence, we have that two finitely presented groups admit coarsely equivalent box spaces if and only if they are commensurable via normal subgroups. We also provide an example of two filtrations (Ni) and (Mi) of a free group F such that Mi > Ni for all i with [Mi:Ni] uniformly bounded, but with $\squ _{(N_i)}F$ not coarsely equivalent to $\squ _{(M_i)}F$. Finally, we give some applications of the main theorem for rank gradient and the first ℓ2 Betti number, and show that the main theorem can be used to construct infinitely many coarse equivalence classes of box spaces with various properties.


The main theorem of this paper states that a finitely generated group can be embedded in a finitely presented group if and only if it has a recursively enumerable set of defining relations. It follows that every countable A belian group, and every countable locally finite group can be so embedded; and that there exists a finitely presented group which simultaneously embeds all finitely presented groups. A nother corollary of the theorem is the known fact that there exist finitely presented groups with recursively insoluble word problem . A by-product of the proof is a genetic characterization of the recursively enumerable subsets of a suitable effectively enumerable set.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


2017 ◽  
Vol 11 (1) ◽  
pp. 291-310
Author(s):  
Daniele Ettore Otera ◽  
Valentin Poénaru

Sign in / Sign up

Export Citation Format

Share Document