VERIFYING THAT A GROUP IS VIRTUALLY FREE

1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.

2013 ◽  
Vol 156 (1) ◽  
pp. 115-121
Author(s):  
ANITHA THILLAISUNDARAM

AbstractIn a previous paper, Button and Thillaisundaram proved that all finitely presented groups of p-deficiency greater than one are p-large. Here we prove that groups with a finite presentation of p-deficiency one possess a finite index subgroup that surjects onto the integers. This implies that these groups do not have Kazhdan's property (T). Additionally, we show that the aforementioned result of Button and Thillaisundaram implies a result of Lackenby.


1973 ◽  
Vol 16 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Peter M. Neumann

Following a suggestion of G. Higman we say that the group G is SQ-universal if every countable group is embeddable in some factor group of G. It is a well-known theorem of G. Higman, B. H. Neumann and Hanna Neumann that the free group of rank 2 is sq-universal in this sense. Several different proofs are now available (see, for example, [1] or [9]). It is my intention to prove the LEmma. If H is a subgroup of finite index in a group G, then G is SQ-universal if and only if H is SQ-universal.


2011 ◽  
Vol 21 (04) ◽  
pp. 547-574 ◽  
Author(s):  
J. O. BUTTON ◽  
A. THILLAISUNDARAM

We use Schlage-Puchta's concept of p-deficiency and Lackenby's property of p-largeness to show that a group having a finite presentation with p-deficiency greater than 1 is large, which implies that Schlage-Puchta's infinite finitely generated p-groups are not finitely presented. We also show that for all primes p at least 7, any group having a presentation of p-deficiency greater than 1 is Golod–Shafarevich, and has a finite index subgroup which is Golod–Shafarevich for the remaining primes. We also generalize a result of Grigorchuk on Coxeter groups to odd primes.


2016 ◽  
Vol 26 (07) ◽  
pp. 1467-1482 ◽  
Author(s):  
Samuel M. Corson

In this paper, we prove the claim given in the title. A group [Formula: see text] is noncommutatively slender if each map from the fundamental group of the Hawaiian Earring to [Formula: see text] factors through projection to a canonical free subgroup. Higman, in his seminal 1952 paper [Unrestricted free products and varieties of topological groups, J. London Math. Soc. 27 (1952) 73–81], proved that free groups are noncommutatively slender. Such groups were first defined by Eda in [Free [Formula: see text]-products and noncommutatively slender groups, J. Algebra 148 (1992) 243–263]. Eda has asked which finitely presented groups are noncommutatively slender. This result demonstrates that random finitely presented groups in the few-relator sense are noncommutatively slender.


2009 ◽  
Vol 01 (01) ◽  
pp. 1-12 ◽  
Author(s):  
INDIRA CHATTERJI ◽  
MARTIN KASSABOV

We give an explicit finite presentation of a group normally generated by SL∞(ℤ). As a consequence, such a group cannot act on e.g. a finite dimensional contractible manifold or on a compact manifold.


2021 ◽  
pp. 1-20
Author(s):  
Damian Osajda

A group is SimpHAtic if it acts geometrically on a simply connected simplicially hereditarily aspherical (SimpHAtic) complex. We show that finitely presented normal subgroups of the SimpHAtic groups are either: finite, or of finite index, or virtually free. This result applies, in particular, to normal subgroups of systolic groups. We prove similar strong restrictions on group extensions for other classes of asymptotically aspherical groups. The proof relies on studying homotopy types at infinity of groups in question. We also show that non-uniform lattices in SimpHAtic complexes (and in more general complexes) are not finitely presentable and that finitely presented groups acting properly on such complexes act geometrically on SimpHAtic complexes. In Appendix we present the topological two-dimensional quasi-Helly property of systolic complexes.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

Sign in / Sign up

Export Citation Format

Share Document