Subgroups of finitely presented groups

The main theorem of this paper states that a finitely generated group can be embedded in a finitely presented group if and only if it has a recursively enumerable set of defining relations. It follows that every countable A belian group, and every countable locally finite group can be so embedded; and that there exists a finitely presented group which simultaneously embeds all finitely presented groups. A nother corollary of the theorem is the known fact that there exist finitely presented groups with recursively insoluble word problem . A by-product of the proof is a genetic characterization of the recursively enumerable subsets of a suitable effectively enumerable set.

1973 ◽  
Vol 8 (1) ◽  
pp. 27-60 ◽  
Author(s):  
R.W. Gatterdam

Finitely presented groups having word, problem solvable by functions in the relativized Grzegorczyk hierarchy, {En(A)| n ε N, A ⊂ N (N the natural numbers)} are studied. Basically the class E3 consists of the elementary functions of Kalmar and En+1 is obtained from En by unbounded recursion. The relativization En(A) is obtained by adjoining the characteristic function of A to the class En.It is shown that the Higman construction embedding, a finitely generated group with a recursively enumerable set of relations into a finitely presented group, preserves the computational level of the word problem with respect to the relativized Grzegorczyk hierarchy. As a corollary it is shown that for every n ≥ 4 and A ⊂ N recursively enumerable there exists a finitely presented group with word problem solvable at level En(A) but not En-1(A). In particular, there exist finitely presented groups with word problem solvable at level En but not En-1 for n ≥ 4, answering a question of Cannonito.


1974 ◽  
Vol 18 (1) ◽  
pp. 1-7 ◽  
Author(s):  
W. W. Boone ◽  
D. J. Collins

It is a trivial consequence of Magnus' solution to the word problem for one-relator groups [9] and the existence of finitely presented groups with unsolvable word problem [4] that not every finitely presented group can be embedded in a one-relator group. We modify a construction of Aanderaa [1] to show that any finitely presented group can be embedded in a group with twenty-six defining relations. It then follows from the well-known theorem of Higman [7] that there is a fixed group with twenty-six defining relations in which every recursively presented group is embedded.


2009 ◽  
Vol 02 (04) ◽  
pp. 611-635 ◽  
Author(s):  
K. Kalorkoti

The algorithmic unsolvability of the conjugacy problem for finitely presented groups was demonstrated by Novikov in the early 1950s. Various simplifications and alternative proofs were found by later researchers and further questions raised. Recent work by Borovik, Myasnikov and Remeslennikov has considered the question of what proportion of the number of elements of a group (obtained by standard constructions) falls into the realm of unsolvability. In this paper we provide a straightforward construction, as a Britton tower, of a finitely presented group with solvable word problem but unsolvable conjugacy problem of any r.e. (recursively enumerable) Turing degree a. The question of whether two elements are conjugate is bounded truth-table reducible to the question of whether the elements are both conjugate to a single generator of the group. We also define computable normal forms, based on the method of Bokut', that are suitable for the conjugacy problem. We consider (ordered) pairs of normal words U, V for the conjugacy problem whose lengths add to l and show that the proportion of such pairs for which conjugacy is undecidable (in the case a ≠ 0) is strictly less than l2/(2λ - 1)l where λ > 4. The construction is based on modular machines, introduced by Aanderaa and Cohen. For the purposes of this construction it was helpful to extend the notion of configuration to include pairs of m-adic integers. The notion of computation step was also extended and is referred to as s-fold computation where s ∈ ℤ (the usual notion coresponds to s = 1). If gcd (m, s) = 1 then determinism is preserved, i.e., if the modular machine is deterministic then it remains so under the extended notion. Furthermore there is a simple correspondence between s-fold and standard computation in this case. Otherwise computation is non-deterministic and there does not seem to be any straightforward correspondence between s-fold and standard computation.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

2018 ◽  
Vol 28 (07) ◽  
pp. 1299-1381
Author(s):  
W. Dison ◽  
E. Einstein ◽  
T. R. Riley

For a finitely presented group, the word problem asks for an algorithm which declares whether or not words on the generators represent the identity. The Dehn function is a complexity measure of a direct attack on the word problem by applying the defining relations. Dison and Riley showed that a “hydra phenomenon” gives rise to novel groups with extremely fast growing (Ackermannian) Dehn functions. Here, we show that nevertheless, there are efficient (polynomial time) solutions to the word problems of these groups. Our main innovation is a means of computing efficiently with enormous integers which are represented in compressed forms by strings of Ackermann functions.


Author(s):  
M. F. Newman ◽  
E. A. O'Brien

AbstractWe answer some questions which arise from a recent paper of Campbell, Heggie, Robertson and Thomas on one-relator free products of two cyclic groups. In the process we show how publicly accessible computer programs can be used to help answer questions about finite group presentations.


2004 ◽  
Vol 70 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Manuel Cárdenas ◽  
Francisco F. Lasheras ◽  
Ranja Roy

In this paper, we show that the direct of infinite finitely presented groups is always properly 3-realisable. We also show that classical hyperbolic groups are properly 3-realisable. We recall that a finitely presented group G is said to be properly 3-realisable if there exists a compact 2-polyhedron K with π1 (K) ≅ G and whose universal cover K̃ has the proper homotopy type of a (p.1.) 3-manifold with boundary. The question whether or not every finitely presented is properly 3-realisable remains open.


1998 ◽  
Vol 1 ◽  
pp. 25-41 ◽  
Author(s):  
Graham Ellis

AbstractThis paper provides details of a Magma computer program for calculating various homotopy-theoretic functors, defined on finitely presented groups. A copy of the program is included as an Add-On. The program can be used to compute: the nonabelian tensor product of two finite groups, the first homology of a finite group with coefficients in the arbirary finite module, the second integral homology of a finite group relative to its normal subgroup, the third homology of the finite p-group with coefficients in Zp, Baer invariants of a finite group, and the capability and terminality of a finite group. Various other related constructions can also be computed.


2018 ◽  
Vol 21 (5) ◽  
pp. 949-971
Author(s):  
Maurice Chiodo ◽  
Rishi Vyas

Abstract We show that a construction by Aanderaa and Cohen used in their proof of the Higman Embedding Theorem preserves torsion length. We give a new construction showing that every finitely presented group is the quotient of some {C^{\prime}(1/6)} finitely presented group by the subgroup generated by its torsion elements. We use these results to show there is a finitely presented group with infinite torsion length which is {C^{\prime}(1/6)} , and thus word-hyperbolic and virtually torsion-free.


Sign in / Sign up

Export Citation Format

Share Document