Gravity Anomaly of Polyhedral Bodies Having a Polynomial Density Contrast

2017 ◽  
Vol 38 (4) ◽  
pp. 781-832 ◽  
Author(s):  
M. G. D’Urso ◽  
S. Trotta
Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. G23-G34 ◽  
Author(s):  
João B. C. Silva ◽  
Darcicléa F. Santos

We have developed a novel approach to compute, in an efficient and versatile way, the gravity anomaly produced by an arbitrary, discrete 3D distribution of density contrast. The method allows adjustable precision and is particularly suited for the interpretation of sedimentary basins. Because the gravity field decays with the square of the distance, we use a discrete Green’s operator that may be made much smaller than the whole study area. For irregularly positioned observations, this discrete Green’s operator must be computed just at the first iteration, and because each of its horizontal layers presents a center of symmetry, only one-eighth of its total elements need to be calculated. Furthermore, for gridded data on a plane, this operator develops translation symmetry for the whole region of interest and has to be computed just once for a single arbitrary observation position. The gravity anomaly is obtained as the product of this small operator by any arbitrary density contrast distribution in a convolution-like operation. We use the proposed modeling to estimate the basement relief of a [Formula: see text] basin with density contrast varying along [Formula: see text] only using a smaller Green’s operator at all iterations. The median of the absolute differences between relief estimates, using the small and a large operator (the latter covering the whole basin) has been approximately 9 m for a 3.6 km deep basin. We also successfully inverted the anomaly of a simulated basin with density contrast varying laterally and vertically, and a real anomaly produced by a steeply dipping basement. The proposed modeling is very fast. For 10,000 observations gridded on a plane, the inversion using the proposed approach for irregularly spaced data is two orders of magnitude faster than using an analytically derived fitting, and this ratio increases enormously with the number of observations.


2018 ◽  
Vol 214 (3) ◽  
pp. 2115-2132 ◽  
Author(s):  
Chaojian Chen ◽  
Zhengyong Ren ◽  
Kejia Pan ◽  
Jingtian Tang ◽  
Thomas Kalscheuer ◽  
...  

Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 754-764 ◽  
Author(s):  
Valéria C. F. Barbosa ◽  
João B. C. Silva ◽  
Walter E. Medeiros

We present a new, stable method for interpreting the basement relief of a sedimentary basin which delineates sharp discontinuities in the basement relief and incorporates any law known a priori for the spatial variation of the density contrast. The subsurface region containing the basin is discretized into a grid of juxtaposed elementary prisms whose density contrasts are the parameters to be estimated. Any vertical line must intersect the basement relief only once, and the mass deficiency must be concentrated near the earth’s surface, subject to the observed gravity anomaly being fitted within the experimental errors. In addition, upper and lower bounds on the density contrast of each prism are introduced a priori (one of the bounds being zero), and the method assigns to each elementary prism a density contrast which is close to either bound. The basement relief is therefore delineated by the contact between the prisms with null and nonnull estimated density contrasts, the latter occupying the upper part of the discretized region. The method is stabilized by introducing constraints favoring solutions having the attributes (shared by most sedimentary basins) of being an isolated compact source with lateral borders dipping either vertically or toward the basin center and having horizontal dimensions much greater than its largest vertical dimension. Arbitrary laws of spatial variations of the density contrast, if known a priori, may be incorporated into the problem by assigning suitable values to the nonnull bound of each prism. The proposed method differs from previous stable methods by using no smoothness constraint on the interface to be estimated. As a result, it may be applied not only to intracratonic sag basins where the basement relief is essentially smooth but also to rift basins whose basements present discontinuities caused by faults. The method’s utility in mapping such basements was demonstrated in tests using synthetic data produced by simulated rift basins. The method mapped with good precision a sequence of step faults which are close to each other and present small vertical slips, a feature particularly difficult to detect from gravity data only. The method was also able to map isolated discontinuities with large vertical throw. The method was applied to the gravity data from Reco⁁ncavo basin, Brazil. The results showed close agreement with known geological structures of the basin. It also demonstrated the method’s ability to map a sequence of alternating terraces and structural lows that could not be detected just by inspecting the gravity anomaly. To demostrate the method’s flexibility in incorporating any a priori knowledge about the density contrast variation, it was applied to the Bouguer anomaly over the San Jacinto Graben, California. Two different exponential laws for the decrease of density contrast with depth were used, leading to estimated maximum depths between 2.2 and 2.4 km.


Geophysics ◽  
1963 ◽  
Vol 28 (5) ◽  
pp. 724-735 ◽  
Author(s):  
D. C. Skeels

It is assumed that the maximum depth for the mass responsible for a given gravity anomaly is closely approximated by the depth to the top of the vertical‐sided mass (prism or cylinder, as the case may be) whose calculated anomaly gives the closest fit to the observed anomaly, and whose density contrast is the maximum permitted from geological considerations. A set of charts is presented by means of which the depth and dimensions of the prism (or cylinder) of “best fit” can be determined quickly from the amplitude, half‐maximum, and three‐quarter maximum widths of the anomaly, together with the assumed density contrast. Four examples are given of the use of the method with actual data.


2020 ◽  
Vol 222 (3) ◽  
pp. 1977-1991 ◽  
Author(s):  
M Scarponi ◽  
G Hetényi ◽  
T Berthet ◽  
L Baron ◽  
P Manzotti ◽  
...  

SUMMARY We provide a high-resolution image of the Ivrea Geophysical Body (IGB) in the Western Alps with new gravity data and 3-D density modelling, integrated with surface geological observations and laboratory analyses of rock properties. The IGB is a sliver of Adriatic lower lithosphere that is located at shallow depths along the inner arc of the Western Alps, and associated with dense rocks that are exposed in the Ivrea-Verbano Zone (IVZ). The IGB is known for its high seismic velocity anomaly at shallow crustal depths and a pronounced positive gravity anomaly. Here, we investigate the IGB at a finer spatial scale, merging geophysical and geological observations. We compile existing gravity data and we add 207 new relative gravity measurements, approaching an optimal spatial coverage of 1 data point per 4–9 km2 across the IVZ. A compilation of tectonic maps and rock laboratory analyses together with a mineral properties database is used to produce a novel surface rock-density map of the IVZ. The density map is incorporated into the gravity anomaly computation routine, from which we defined the Niggli gravity anomaly. This accounts for Bouguer Plate and terrain correction, both considering the in situ surface rock densities, deviating from the 2670 kg m–3 value commonly used in such computations. We then develop a 3-D single-interface crustal density model, which represents the density distribution of the IGB, including the above Niggli-correction. We retrieve an optimal fit to the observations by using a 400 kg m–3 density contrast across the model interface, which reaches as shallow as 1 km depth below sea level. The model sensitivity tests suggest that the ∼300–500 kg m–3 density contrast range is still plausible, and consequently locates the shallowest parts of the interface at 0 km and at 2 km depth below sea level, for the lowest and the highest density contrast, respectively. The former model requires a sharp density discontinuity, the latter may feature a vertical transition of densities on the order of few kilometres. Compared with previous studies, the model geometry reaches shallower depths and suggests that the width of the anomaly is larger, ∼20 km in west–east direction and steeply E–SE dipping. Regarding the possible rock types composing the IGB, both regional geology and standard background crustal structure considerations are taken into account. These exclude both felsic rocks and high-pressure metamorphic rocks as suitable candidates, and point towards ultramafic or mantle peridotite type rocks composing the bulk of the IGB.


Geophysics ◽  
2009 ◽  
Vol 74 (2) ◽  
pp. I1-I7 ◽  
Author(s):  
Xiaobing Zhou

Line integrals (LIs) are an efficient tool in calculating the gravity anomaly caused by an irregular 2D mass body because the 2D surface integral is reduced to a 1D LI. Historically, LIs have been derived for 2D mass bodies of depth-dependent density contrast. I derive LIs for 2D mass bodies with density contrast dependent on (1) horizontal and (2) horizontal and vertical directions. Assuming the density contrast depends only on horizontal position, two types of representative LIs are derived: LIs with logarithmic kernel and density-integrated LIs for any integrable density-contrast function. A general density-contrast model that depends on horizontal and vertical directions is developed to include three components: a function of horizontal position, a function of vertical position, and a sum of crossterms of horizontal and vertical positions. Based on the general density-contrast model defined and proper selection of 2D vector gravity potentials, general LIs are derived to calculate the gravity anomaly. The newly developed LI method is then compared with two cases from the literature in calculating gravity anomaly, and agreement is obtained. However, the new LI method allows for more general 2D density-contrast variations and can be used to calculate the gravity anomaly of a 2D mass body. Such a mass body can have any cross-sectional profile that can be approximated by a polygonal cross section with any density-contrast function that can be approximated by a rich set of basis functions.


Sign in / Sign up

Export Citation Format

Share Document