Republication of: A threedimensional formulation of the Bianchi identities for vacuum gravitational fields

2021 ◽  
Vol 53 (12) ◽  
Author(s):  
Manfred Trümper
2000 ◽  
Vol 6 (1) ◽  
pp. 56-63
Author(s):  
K.K. Kamensky ◽  
V.S. Kislyuk ◽  
Ya.S. Yatskiv ◽  
◽  

1965 ◽  
Vol 6 (1) ◽  
pp. 1-5 ◽  
Author(s):  
P. G. Bergmann ◽  
M. Cahen ◽  
A. B. Komar

Synthese ◽  
2021 ◽  
Author(s):  
Antonio Vassallo

AbstractThe dynamics of general relativity is encoded in a set of ten differential equations, the so-called Einstein field equations. It is usually believed that Einstein’s equations represent a physical law describing the coupling of spacetime with material fields. However, just six of these equations actually describe the coupling mechanism: the remaining four represent a set of differential relations known as Bianchi identities. The paper discusses the physical role that the Bianchi identities play in general relativity, and investigates whether these identities—qua part of a physical law—highlight some kind of a posteriori necessity in a Kripkean sense. The inquiry shows that general relativistic physics has an interesting bearing on the debate about the metaphysics of the laws of nature.


1993 ◽  
Vol 155 (1) ◽  
pp. 270-274 ◽  
Author(s):  
Anton W. Neff ◽  
Hiroki Yokota ◽  
Hae-Moon Chung ◽  
Masami Wakahara ◽  
George M. Malacinski
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 193 ◽  
Author(s):  
Giovanni Alberto Ummarino ◽  
Antonio Gallerati

We calculate the possible interaction between a superconductor and the static Earth’s gravitational fields, making use of the gravito-Maxwell formalism combined with the time-dependent Ginzburg–Landau theory. We try to estimate which are the most favorable conditions to enhance the effect, optimizing the superconductor parameters characterizing the chosen sample. We also give a qualitative comparison of the behavior of high–Tc and classical low–Tc superconductors with respect to the gravity/superfluid interplay.


Sign in / Sign up

Export Citation Format

Share Document