On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem

2017 ◽  
Vol 24 (3) ◽  
pp. 515-550 ◽  
Author(s):  
Sandra Zajac
2008 ◽  
Vol 2008 ◽  
pp. 1-16
Author(s):  
Selçuk K. İşleyen ◽  
Ö. Faruk Baykoç

We define a special case for the vehicle routing problem with stochastic demands (SC-VRPSD) where customer demands are normally distributed. We propose a new linear model for computing the expected length of a tour in SC-VRPSD. The proposed model is based on the integration of the “Traveling Salesman Problem” (TSP) and the Assignment Problem. For large-scale problems, we also use an Iterated Local Search (ILS) algorithm in order to reach an effective solution.


2021 ◽  
Vol 55 (2) ◽  
pp. 395-413
Author(s):  
Maaike Hoogeboom ◽  
Yossiri Adulyasak ◽  
Wout Dullaert ◽  
Patrick Jaillet

In practice, there are several applications in which logistics service providers determine the service time windows at the customers, for example, in parcel delivery, retail, and repair services. These companies face uncertain travel times and service times that have to be taken into account when determining the time windows and routes prior to departure. The objective of the proposed robust vehicle routing problem with time window assignments (RVRP-TWA) is to simultaneously determine routes and time window assignments such that the expected travel time and the risk of violating the time windows are minimized. We assume that the travel time probability distributions are not completely known but that some statistics, such as the mean, minimum, and maximum, can be estimated. We extend the robust framework based on the requirements’ violation index, which was originally developed for the case where the specific requirements (time windows) are given as inputs, to the case where they are also part of the decisions. The subproblem of finding the optimal time window assignment for the customers in a given route is shown to be convex, and the subgradients can be derived. The RVRP-TWA is solved by iteratively generating subgradient cuts from the subproblem that are added in a branch-and-cut fashion. Experiments address the performance of the proposed solution approach and examine the trade-off between expected travel time and risk of violating the time windows.


Sign in / Sign up

Export Citation Format

Share Document