Cold Stimuli Facilitate Inflammatory Responses Through Transient Receptor Potential Melastatin 8 (TRPM8) in Primary Airway Epithelial Cells of Asthmatic Mice

Inflammation ◽  
2018 ◽  
Vol 41 (4) ◽  
pp. 1266-1275 ◽  
Author(s):  
Haipei Liu ◽  
Li Hua ◽  
Quanhua Liu ◽  
Jun Pan ◽  
Yixiao Bao
Author(s):  
Ahsen Ustaoglu ◽  
Akinari Sawada ◽  
Chung Lee ◽  
Wei-Yi Lei ◽  
Chien-Lin Chen ◽  
...  

The underlying causes of heartburn, characteristic symptom of gastro-esophageal reflux disease(GERD), remain incompletely understood. Superficial afferent innervation of the esophageal mucosa in nonerosive reflux disease(NERD) may drive nociceptive reflux perception, but its acid-sensing role has not yet been established. Transient receptor potential vanilloid subfamily member-1(TRPV1), transient receptor potential Melastatin 8(TRPM8), and acid sensing ion channel 3(ASIC3) are regulators of sensory nerve activity and could be important reflux-sensing receptors within the esophageal mucosa. We characterised TRPV1, TRPM8, and ASIC3 expression in esophageal mucosa of GERD patients. We studied 10 NERD, 10 erosive reflux disease(ERD), 7 functional heartburn(FH), and 8 Barrett's esophagus(BE) patients. Biopsies obtained from the distal esophageal mucosa were co-stained with TRPV1, TRPM8, or ASIC3, and CGRP, CD45, or E-cadherin. RNA expression of TRPV1, TRPM8, and ASIC3 was assessed using qPCR. NERD patients had significantly increased expression of TRPV1 on superficial sensory nerves compared to ERD (p=0.028) or BE (p=0.017). Deep intrapapillary nerve endings did not express TRPV1 in all phenotypes studied. ASIC3 was exclusively expressed on epithelial cells most significantly in NERD and ERD patients (p=<0.0001). TRPM8 was expressed on submucosal CD45+ leukocytes. Superficial localisation of TRPV1-immunoreactive nerves in NERD, and increased ASIC3 co-expression on epithelial cells in NERD and ERD suggests a mechanism for heartburn sensation. Esophageal epithelial cells may play a sensory role in acid reflux perception and act interdependently with TRPV1-expressing mucosal nerves to augment hypersensitivity in NERD patients, raising the enticing possibility of topical antagonists for these ion channels as a therapeutic option.


2020 ◽  
Vol 21 (10) ◽  
pp. 985-992 ◽  
Author(s):  
Koichi Inoue ◽  
Zhi-Gang Xiong ◽  
Takatoshi Ueki

: Transient receptor potential melastatin 7 (TRPM7), along with the closely related TRPM6, are unique channels that have dual operations: cation permeability and kinase activity. In contrast to the limited tissue distribution of TRPM6, TRPM7 is widely expressed among tissues and is therefore implicated in a variety of cellular functions physiologically and pathophysiologically. The discovery of TRPM7’s unique structure imparting dual ion channel and kinase activities shed light onto novel and peculiar biological functions, such as Mg2+ homeostasis, cellular Ca2+ flickering, and even intranuclear transcriptional regulation by a cleaved kinase domain translocated to nuclei. Interestingly, at a higher level, TRPM7 participates in several biological processes in the nervous and cardiovascular systems, in which excitatory responses in neurons and cardiomyocytes are critical for their function. Here, we review the roles of TRPM7 in cells involved in the nervous and cardiovascular systems and discuss its potential as a future therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document