renal tubular epithelial cells
Recently Published Documents


TOTAL DOCUMENTS

742
(FIVE YEARS 211)

H-INDEX

46
(FIVE YEARS 7)

2022 ◽  
Vol 8 ◽  
Author(s):  
Wenqiang Tao ◽  
Fen Liu ◽  
Jianguo Zhang ◽  
Shangmiao Fu ◽  
Hui Zhan ◽  
...  

Renal ischemia-reperfusion (IR) is frequently observed in patients who are critically ill, yet there are no reliable or effective approaches for the treatment of this condition. Ferroptosis, a form of programmed cell death, is regulated by key genes such as glutathione peroxidase 4 (GPX4) and heme oxygenase-1 (HMOX1) and participates in the injury of renal tubular epithelial cells during IR. This study aimed to investigate the miRNA-mRNA regulatory networks involved in ferroptosis following renal IR. Using bioinformatics analysis, HMOX1 was found to be significantly upregulated during the early stages of renal IR injury, and microRNA-3587 (miR-3587) was identified as a putative regulator of HMOX1. When a miR-3587 inhibitor was applied in a hypoxia-reoxygenation (HR) model system using renal tubular epithelial cells, HO-1 protein (encoded by HMOX1) expression was significantly increased relative to that observed in the HR group, with concomitant increases in GPX4 protein levels, enhanced cell viability, a reduction in malondialdehyde content, decreased Fe2+ level, and the restoration of normal mitochondrial membrane potential. Transmission electron microscopy showed a reduced or absent mitochondrial crest and a damaged mitochondrial outer membrane. Targeting of HMOX1 by miR-3587 was confirmed by luciferase reporter gene assay. In conclusion, these preliminary results indicate that inhibition of miR-3587 promotes HO-1 upregulation, thereby protecting renal tissues from IR-induced ferroptosis.


2022 ◽  
Vol 12 (1) ◽  
pp. 71-80
Author(s):  
Ting Liu ◽  
Jie Chen ◽  
Yiying Ying ◽  
Ling Shi ◽  
Zhengyue Chen

This research aimed to study the inhibitory effect of Glurenorm (gliquidone) on epithelial-to-mesenchymal-transition (EMT) of renal tubular epithelial cells based on the diabetic nephropathy (DN) model. In this study, 30 specific pathogen-free (SPF) mice were selected to construct DN model and randomly rolled into groups A, B, and C, with 10 mice in each group. Low-dose, mediumdose, and high-dose Glurenorm were administered intragastrically. The results showed that the serum urea nitrogen content (7.23±0.39 mmol/L, 6.18±0.46 mmol/L) of control and C group was considerably inferior to A group (8.01±0.48 mmol/L), and the content of C group was greatly lower than controls (P < 0.05). The creatinine clearance rate (2.97±0.44 mL/min, 4.02±0.31 mL/min) of mice in control and C group was notably superior to A group (2.18±0.38 mL/min), and that of C group was obviously higher versus controls (P < 0.05). After 5 weeks of intragastric intervention by Glurenorm, the body mass of the mice in control and C group was evidently lower relative to A group, and that of C group was obviously higher versus controls (P < 0.05). Mice in control and C group were remarkably lower in body mass at the 7th week after Glurenorm intervention versus A group, and C group was relatively lower versus controls (P < 0.05). In short, EMT played an important role in promoting the occurrence and progression of renal fibrosis. Glurenorm can reduce the progression of renal fibrosis, inhibit EMT of renal tubular epithelial cells, and effectively protect kidney function.


BIOCELL ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 937-940
Author(s):  
CLAIRE ELIZABETH HILLS ◽  
ELEFTHERIOS SIAMANTOURAS ◽  
PAUL EDWARD SQUIRES

2021 ◽  
Vol 12 ◽  
Author(s):  
Shu-Jun Dong ◽  
Xin-Yue Gao ◽  
Ming-Xin Pei ◽  
Ting Luo ◽  
Dong Fan ◽  
...  

With the increasing application of medical imaging contrast materials, contrast-induced nephropathy (CIN) has become the third major cause of iatrogenic renal insufficiency. CIN is defined as an absolute increase in serum creatinine levels of at least 0.50 mg/dl or an increase &gt;25% of serum creatinine from baseline after exposure to contrast. In this study, the protective effects of salvianolic acid B (Sal B) were detected in human renal tubular epithelial cells (HK-2) exposed to iopromide. The results showed that different concentrations of Sal B counteract the loss of cell viability induced by iopromide, and reduce cell apoptosis, the reactive oxygen species (ROS) levels, and the levels of endoplasmic reticulum stress (ERS)–related and apoptosis-related proteins such as p-IRE-1α, p-eIF-2α/eIF-2α, p-JNK, CHOP, Bax/Bcl-2, and cleaved caspase-3. In addition, Sal B at a concentration of 100 μmol/L inhibited ERS and reduced cell damage to a similar extent as the ERS inhibitor 4-PBA. Importantly, treatment with Sal B could abolish the injury induced by ERS agonist tunicamycin, increasing cell viability and the mitochondrial membrane potential, as well as significantly reducing ROS levels and the expression of Bax/Bcl-2, cleaved-caspase-3, GRP78, p-eIF2α, p-JNK, and CHOP. These results suggested that the protective effect of Sal B against HK-2 cell injury induced by iopromide may be related to the inhibition of ERS.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Sean E. DeWolf ◽  
Sashi G. Kasimsetty ◽  
Alana A. Hawkes ◽  
Lisa M. Stocks ◽  
Sunil M. Kurian ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mengru Ding ◽  
Zhiyan Tang ◽  
Wei Liu ◽  
Taili Shao ◽  
Pingchuan Yuan ◽  
...  

Hyperglycemia-induced apoptosis and oxidative stress injury are thought to play important roles in the pathogenesis of diabetic nephropathy (DN). Attenuating high glucose (HG)-induced renal tubular epithelial cell injury has become a potential approach to ameliorate DN. In recent years, burdock fructooligosaccharide (BFO), a water-soluble inulin-type fructooligosaccharide extracted from burdock root, has been shown to have a wide range of pharmacological activities, including antiviral, anti-inflammatory, and hypolipidemic activities. However, the role and mechanism of BFO in rat renal tubular epithelial cells (NRK-52E cells) have rarely been investigated. The present study investigated the protective effect of BFO on HG-induced damage in NRK-52E cells. BFO could protect NRK-52E cells against the reduced cell viability and significantly increased apoptosis rate induced by HG. These anti-oxidative stress effects of BFO were related to the significant inhibition of the production of reactive oxygen species, stabilization of mitochondrial membrane potential, and increased antioxidant (superoxide dismutase and catalase) activities. Furthermore, BFO increased the expression of Nrf2, HO-1, and Bcl-2 and decreased the expression of Bax. In conclusion, these findings suggest that BFO protects NRK-52E cells against HG-induced damage by inhibiting apoptosis and oxidative stress through the Nrf2/HO-1 signaling pathway.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Wan ◽  
Mingyang Hu ◽  
Ziming Jiang ◽  
Dongwei Liu ◽  
Shaokang Pan ◽  
...  

Diabetic nephropathy is considered one of the most common microvascular complications of diabetes and the pathophysiology involves multiple factors. Progressive diabetic nephropathy is believed to be related to the structure and function of the tubular epithelial cells in the kidney. However, the role of lysine acetylation in lesions of the renal tubular epithelial cells arising from hyperglycemia is poorly understood. Consequently, in this study, we cultured mouse renal tubular epithelial cells in vitro under high glucose conditions and analyzed the acetylation levels of proteins by liquid chromatography-high-resolution mass spectrometry. We identified 48 upregulated proteins and downregulated 86 proteins. In addition, we identified 113 sites with higher acetylation levels and 374 sites with lower acetylation levels. Subcellular localization analysis showed that the majority of the acetylated proteins were located in the mitochondria (43.17%), nucleus (28.57%) and cytoplasm (16.19%). Enrichment analysis indicated that these acetylated proteins are primarily associated with oxidative phosphorylation, the citrate cycle (TCA cycle), metabolic pathways and carbon metabolism. In addition, we used the MCODE plug-in and the cytoHubba plug-in in Cytoscape software to analyze the PPI network and displayed the first four most compact MOCDEs and the top 10 hub genes from the differentially expressed proteins between global and acetylated proteomes. Finally, we extracted 37 conserved motifs from 4915 acetylated peptides. Collectively, this comprehensive analysis of the proteome reveals novel insights into the role of lysine acetylation in tubular epithelial cells and may make a valuable contribution towards the identification of the pathological mechanisms of diabetic nephropathy.


Sign in / Sign up

Export Citation Format

Share Document