Determining Sensitive Parameters for the Population Viability of Reintroduced Sumatran Orangutans (Pongo abelii)

2013 ◽  
Vol 34 (2) ◽  
pp. 423-442 ◽  
Author(s):  
Doris Kelle ◽  
Dominik Fechter ◽  
Alexander Singer ◽  
Peter Pratje ◽  
Ilse Storch
2011 ◽  
Author(s):  
Catherine Reeve ◽  
Heidi Marsh ◽  
Suzanne MacDonald

2011 ◽  
Author(s):  
J. M. Scott ◽  
Edward O. Garton ◽  
Brian Dennis ◽  
Jon S. Horne ◽  
Dale Goble ◽  
...  

1996 ◽  
Vol 33 (2) ◽  
pp. 79-90 ◽  
Author(s):  
Jian Hua Lei ◽  
Wolfgang Schilling

Physically-based urban rainfall-runoff models are mostly applied without parameter calibration. Given some preliminary estimates of the uncertainty of the model parameters the associated model output uncertainty can be calculated. Monte-Carlo simulation followed by multi-linear regression is used for this analysis. The calculated model output uncertainty can be compared to the uncertainty estimated by comparing model output and observed data. Based on this comparison systematic or spurious errors can be detected in the observation data, the validity of the model structure can be confirmed, and the most sensitive parameters can be identified. If the calculated model output uncertainty is unacceptably large the most sensitive parameters should be calibrated to reduce the uncertainty. Observation data for which systematic and/or spurious errors have been detected should be discarded from the calibration data. This procedure is referred to as preliminary uncertainty analysis; it is illustrated with an example. The HYSTEM program is applied to predict the runoff volume from an experimental catchment with a total area of 68 ha and an impervious area of 20 ha. Based on the preliminary uncertainty analysis, for 7 of 10 events the measured runoff volume is within the calculated uncertainty range, i.e. less than or equal to the calculated model predictive uncertainty. The remaining 3 events include most likely systematic or spurious errors in the observation data (either in the rainfall or the runoff measurements). These events are then discarded from further analysis. After calibrating the model the predictive uncertainty of the model is estimated.


2020 ◽  
Vol 113 (2) ◽  
pp. 419-434
Author(s):  
Sarah E. Ritvo ◽  
Suzanne E. MacDonald
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yashuai Zhang ◽  
Fang Wang ◽  
Zhenxia Cui ◽  
Min Li ◽  
Xia Li ◽  
...  

Abstract Background One of the most challenging tasks in wildlife conservation and management is clarifying which and how external and intrinsic factors influence wildlife demography and long-term viability. The wild population of the Crested Ibis (Nipponia nippon) has recovered to approximately 4400, and several reintroduction programs have been carried out in China, Japan and Korea. Population viability analysis on this endangered species has been limited to the wild population, showing that the long-term population growth is restricted by the carrying capacity and inbreeding. However, gaps in knowledge of the viability of the reintroduced population and its drivers in the release environment impede the identification of the most effective population-level priorities for aiding in species recovery. Methods The field monitoring data were collected from a reintroduced Crested Ibis population in Ningshan, China from 2007 to 2018. An individual-based VORTEX model (Version 10.3.5.0) was used to predict the future viability of the reintroduced population by incorporating adaptive patterns of ibis movement in relation to catastrophe frequency, mortality and sex ratio. Results The reintroduced population in Ningshan County is unlikely to go extinct in the next 50 years. The population size was estimated to be 367, and the population genetic diversity was estimated to be 0.97. Sensitivity analysis showed that population size and extinction probability were dependent on the carrying capacity and sex ratio. The carrying capacity is the main factor accounting for the population size and genetic diversity, while the sex ratio is the primary factor responsible for the population growth trend. Conclusions A viable population of the Crested Ibis can be established according to population viability analysis. Based on our results, conservation management should prioritize a balanced sex ratio, high-quality habitat and low mortality.


Sign in / Sign up

Export Citation Format

Share Document