scholarly journals Can we reestablish a self-sustaining population? A case study on reintroduced Crested Ibis with population viability analysis

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yashuai Zhang ◽  
Fang Wang ◽  
Zhenxia Cui ◽  
Min Li ◽  
Xia Li ◽  
...  

Abstract Background One of the most challenging tasks in wildlife conservation and management is clarifying which and how external and intrinsic factors influence wildlife demography and long-term viability. The wild population of the Crested Ibis (Nipponia nippon) has recovered to approximately 4400, and several reintroduction programs have been carried out in China, Japan and Korea. Population viability analysis on this endangered species has been limited to the wild population, showing that the long-term population growth is restricted by the carrying capacity and inbreeding. However, gaps in knowledge of the viability of the reintroduced population and its drivers in the release environment impede the identification of the most effective population-level priorities for aiding in species recovery. Methods The field monitoring data were collected from a reintroduced Crested Ibis population in Ningshan, China from 2007 to 2018. An individual-based VORTEX model (Version 10.3.5.0) was used to predict the future viability of the reintroduced population by incorporating adaptive patterns of ibis movement in relation to catastrophe frequency, mortality and sex ratio. Results The reintroduced population in Ningshan County is unlikely to go extinct in the next 50 years. The population size was estimated to be 367, and the population genetic diversity was estimated to be 0.97. Sensitivity analysis showed that population size and extinction probability were dependent on the carrying capacity and sex ratio. The carrying capacity is the main factor accounting for the population size and genetic diversity, while the sex ratio is the primary factor responsible for the population growth trend. Conclusions A viable population of the Crested Ibis can be established according to population viability analysis. Based on our results, conservation management should prioritize a balanced sex ratio, high-quality habitat and low mortality.

1993 ◽  
Vol 20 (1) ◽  
pp. 67 ◽  
Author(s):  
DB Lindenmayer ◽  
RC Lacy ◽  
VC Thomas ◽  
TW Clark

Population Viability Analysis (PVA) uses computer modelling to simulate interacting deterministic and stochastic factors (e.g. demographic, genetic, spatial, environmental and catastrophic processes) that act on small populations and assess their long-term vulnerability to extinction. The computer program VORTEX was used in a PVA of Leadbeater's possum, Gymnobelideus leadbeateri McCoy, an endangered arboreal marsupial that is restricted to the montane ash forests of the central highlands of Victoria. PVA was used to examine the impacts of changes in the size of subpopulations and the effects of environmental variation. Our analyses demonstrated that an annual linear decline in the carrying capacity in all or parts of the habitat will lead to the extinction of G. leadbeateri in those areas. Mean time to extinction was related to the rate of annual decrease. This conclusion is of practical and management importance as there is presently a decline in suitable habitat because of an annual loss of more than 3.5% of trees with hollows, which provide nest sites for G. leadbeateri. Because nest sites are a factor that limits populations of G. leadbeateri, the species could be lost from large areas within the next 50 years. PVA was also used to determine the viability of populations in areas, such as oldgrowth forest, where there is not likely to be a steady decline in habitat carrying capacity resulting from the loss of trees with hollows. This allowed an analysis of the cumulative impacts of small population size, environmental variation and genetic factors, which showed that, for a 100-year projection, simulated populations of 200 animals or more remained demographically stable and experienced a less than 10% decline in predicted genetic variability. However, the relatively simplified nature of population modelling and the suite of assumptions that underpin VORTEX mean that the probability of extinction of populations of this size may be greater than determined in this study. As a result, it is possible that only populations of more than 200 animals may persist in the long term where suitable habitat can be conserved or established and subsequently maintained without a reduction in carrying capacity.


2009 ◽  
Vol 57 (6) ◽  
pp. 451 ◽  
Author(s):  
Andrew P. Nield ◽  
Philip G. Ladd ◽  
Colin J. Yates

Calytrix breviseta Lindl. subsp. breviseta is a critically endangered, obligate-seeder shrub within fire-prone kwongan of south-west Western Australia. Little is known about the species’ reproductive biology and how threatening processes, particularly altered fire regimes and exotic species invasion, will impact the long-term viability of the species. This study aims to elucidate the species’ reproductive biology and patterns of seedling recruitment during succession after fire. The effects of changes to the fire return interval and exotic species invasion on the long-term viability of the species is also described. The species exhibits abundant recruitment following fire and the application of a smoke treatment significantly improves germination, similar to many other Western Australian shrubs. However, significant inter-fire recruitment was observed up to 10 years following fire, leading to the presence of multi-aged subpopulations, although seedling recruitment was negligible >20 years after fire. The juvenile period is short at 3–4 years to first flowering. Population viability analysis (PVA) predicted that the optimal fire return interval to maintain C. breviseta subsp. breviseta was dependent on the carrying capacity (K) of the community and the number of individuals present. Carrying capacity will be related to site quality and competition from invasive species. PVA showed that if K remains high, then the optimal fire return interval is ~15–20 years, but under lower carrying capacity, (i.e. weed competition) fires decrease the likelihood of population survival.


Author(s):  
Stephanie Manzo ◽  
E. Griffin Nicholson ◽  
Zachary Devereux ◽  
Robert N. Fisher ◽  
Chris W. Brown ◽  
...  

Accurate status assessments of long-lived, widely distributed taxa depend on the availability of long-term monitoring data from multiple populations. However, monitoring populations across large temporal and spatial scales is often beyond the scope of any one researcher or research group. Consequently, wildlife managers may be tasked with utilizing limited information from different sources to detect range-wide evidence of population declines and their causes. When assessments need to be made under such constraints, the research and management communities must determine how to extrapolate from variable population data to species-level inferences. Here, using three different approaches, we integrate and analyze data from the peer-reviewed literature and government agency reports to inform conservation for northwestern pond turtles (NPT) Actinemys marmorata and southwestern pond turtles (SPT) Actinemys pallida. Both NPT and SPT are long-lived freshwater turtles distributed along the west coast of the United States and Mexico. Conservation concerns exist for both species; however, SPT may face more severe threats and are thought to exist at lower densities throughout their range than NPT. For each species, we ranked the impacts of 13 potential threats, estimated population sizes, and modeled population viability with and without long-term droughts. Our results suggest that predation of hatchlings by invasive predators, such as American bullfrogs Lithobates catesbeianus and Largemouth Bass Micropterus salmoides, is a high-ranking threat for NPT and SPT. Southwestern pond turtles may also face more severe impacts associated with natural disasters (droughts, wildfires, and floods) than NPT. Population size estimates from trapping surveys indicate that SPT have smaller population sizes on average than NPT (p = 0.0003), suggesting they may be at greater risk of local extirpation. Population viability analysis models revealed that long-term droughts are a key environmental parameter; as the frequency of severe droughts increases with climate change, the likelihood of population recovery decreases, especially when census sizes are low. Given current population trends and vulnerability to natural disasters throughout their range, we suggest that conservation and recovery actions first focus on SPT to prevent further population declines.


1993 ◽  
Vol 20 (1) ◽  
pp. 45 ◽  
Author(s):  
RC Lacy

Population Viability Analysis (PVA) is the estimation of extinction probabilities by analyses that incorporate identifiable threats to population survival into models of the extinction process. Extrinsic forces, such as habitat loss, over-harvesting, and competition or predation by introduced species, often lead to population decline. Although the traditional methods of wildlife ecology can reveal such deterministic trends, random fluctuations that increase as populations become smaller can lead to extinction even of populations that have, on average, positive population growth when below carrying capacity. Computer simulation modelling provides a tool for exploring the viability of populations subjected to many complex, interacting deterministic and random processes. One such simulation model, VORTEX, has been used extensively by the Captive Breeding Specialist Group (Species Survival Commission, IUCN), by wildlife agencies, and by university classes. The algorithms, structure, assumptions and applications of VORTEX are described in this paper. VORTEX models population processes as discrete, sequential events, with probabilistic outcomes. VORTEX simulates birth and death processes and the transmission of genes through the generations by generating random numbers to determine whether each animal lives or dies, to determine the number of progeny produced by each female each year, and to determine which of the two alleles at a genetic locus are transmitted from each parent to each offspring. Fecundity is assumed to be independent of age after an animal reaches reproductive age. Mortality rates are specified for each pre-reproductive age-sex class and for reproductive-age animals. Inbreeding depression is modelled as a decrease in viability in inbred animals. The user has the option of modelling density dependence in reproductive rates. As a simple model of density dependence in survival, a carrying capacity is imposed by a probabilistic truncation of each age class if the population size exceeds the specified carrying capacity. VORTEX can model linear trends in the carrying capacity. VORTEX models environmental variation by sampling birth rates, death rates, and the carrying capacity from binomial or normal distributions. Catastrophes are modelled as sporadic random events that reduce survival and reproduction for one year. VORTEX also allows the user to supplement or harvest the population, and multiple subpopulations can be tracked, with user-specified migration among the units. VORTEX outputs summary statistics on population growth rates, the probability of population extinction, the time to extinction, and the mean size and genetic variation in extant populations. VORTEX necessarily makes many assumptions. The model it incorporates is most applicable to species with low fecundity and long lifespans, such as mammals, birds and reptiles. It integrates the interacting effects of many of the deterministic and stochastic processes that have an impact on the viability of small populations, providing opportunity for more complete analysis than is possible by other techniques. PVA by simulation modelling is an important tool for identifying populations at risk of extinction, determining the urgency of action, and evaluating options for management.


1996 ◽  
Vol 04 (2) ◽  
pp. 69-77
Author(s):  
LI Xin-Hai ◽  
Lu Baozhong ◽  
Zhai Tianqing ◽  
LI Dian-Mo ◽  

1999 ◽  
Vol 5 (1) ◽  
pp. 56 ◽  
Author(s):  
Stephen M. Jackson

The population viability analysis (PVA) program VORTEX was used to examine the viability of different sized populations of the Mahogany Glider Petaurus gracilis, and to examine the impact of a one in a hundred year catastrophe (each requiring a different reserve size) of different severities on different sized populations. The PVA showed that populations up to 300 individuals (1 500 ha) have a negative population growth rate, high losses of genetic diversity and a greater than 5% chance of extinction within 100 years. Populations of 400?700 individuals (2 000?3 500 ha) showed a decreasing trend in population size suggesting they are likely to become extinct after 100 years. A population of 800 individuals (4 000 ha) was needed for the population size to stabilize. Sensitivity analysis showed adult mortality of greater than 25% to be important in decreasing the viability of populations. Populations of 400 were resistant to a one in 100 year catastrophe which had a 20% mortality and 20% decrease in reproduction. When the mortality was 70%, with 70% decrease in reproduction, a population of 1 000 still had a 12% chance of extinction. As only approximately 50% of the available habitat appears to be occupied, an area up to 8 000 ha (800 individuals) is suggested to be required to maintain viable populations of Mahogany Gliders. A number of management options are recommended including the retention of habitat, establishing corridors between key populations, and using fire to minimize rainforest expansion.


Mammalia ◽  
2020 ◽  
Vol 84 (5) ◽  
pp. 475-482
Author(s):  
Bárbara Cruz-Salazar ◽  
Lorena Ruiz-Montoya

AbstractWe studied the population viability of two common marsupials, Didelphis marsupialis and Didelphis virginiana, based on field data and published ecological and genetic information. Using the VORTEX v. 10. 2.6 program, a 100-year simulation was performed with 1000 iterations for five populations of D. marsupialis and six of D. virginiana. A low probability of extinction was observed in both species, particularly for D. virginiana (0.000–0.007). Population size is higher considering a metapopulation dynamics approach versus individual populations for the two marsupials: 498.25 individuals for D. marsupialis and 367.41 individuals for D. virginiana. The estimated mean genetic diversity was high for both D. marsupialis (He = 0.77–0.78) and D. virginiana (He = 0.79–0.82). The survival of both species over time could be expected to increase if a metapopulation dynamics is favored over the coming decades, despite a 1.3% loss rate of forest cover. The monitoring of population size and genetic diversity is highly recommended to validate the trends suggested by the model; this is especially true for D. marsupialis, a species associated with conserved areas that are becoming progressively less abundant. This research provides information on the responses of common mammalian species to environmental changes such as deforestation.


2021 ◽  
Author(s):  
◽  
Joanna Wilson

<p>Population viability for small, isolated populations is determined by many factors, particularly demographic stochasticity. Coexistence of communities is promoted through resource partitioning, particularly if species share similar niche requirements. Demographic characteristics, long-term trends and patterns of partitioning were investigated for two reptile species: tuatara (Sphenodon punctatus) and Duvaucel's gecko (Hoplodactylus duvaucelii), using mark recapture techniques on North Brother Island, New Zealand. Capture time and location were recorded as well as snout-vent length, mass and sex of individuals. Adult population size, sex ratio, survival and recapture probability for both species were estimated. Intervention will be needed to prevent population collapse for tuatara, as the population is male-biased (3.24 males: 1 female), with sub-adults exhibiting a stronger bias (4.1 males: 1 female). The total population size is estimated at 390-437 adults, with high adult survival (95%). The Duvaucel's gecko population is stable enough to be harvested for translocation, as the population was estimated at 583-677 adults, with an even sex ratio. Adult survival was high (92%) and longevity is at least 43-50 years. Patterns in partitioning suggest tuatara are excluding Duvaucel's gecko as tuatara occupy vegetated areas and few animals were caught at the same time in the same place as a member of the other species (~10%). Long-term site fidelity appears to occur in both species as the majority of animals were captured previously within 10m (tuatara) or 15m (Duvaucel's gecko) of their 2008 location, and travelled less than 2m per year on average. Tuatara show an overall decline in body condition since 1957, which is more rapid in females, and may be related to intraspecific interactions and density-dependent effects. Gecko body condition is not declining, suggesting no negative effects at the population level are occurring as a result of competitive exclusion. This study indicates that characteristics that have implications for population viability have the capacity to differ, even for species with similar niche requirements occupying the same habitat, and supports the considerable value of long-term monitoring.</p>


2007 ◽  
Vol 17 (2) ◽  
pp. 151-161 ◽  
Author(s):  
Yanyun Zhang ◽  
Guangmei Zheng

AbstractUnderstanding the status of fragmented populations and predicting their fate is an increasingly important part of bird conservation. Population viability analysis (PVA) can help in this process and is widely used for assessing the extinction risk faced by threatened species and for finding the key factors affecting population status and survival prospects. From 1982 to 2004, 14 scientists studied the population of the globally threatened Cabot's Tragopan Tragopan caboti in Wuyanling National Natural Reserve (WNNR), south-east China and collected life-history data on the population. Using VORTEX, we analysed the viability of the population in the reserve and this predicted that the population size will increase for the next 50 years and will then show a very slight decline for the next 50 years. The loss of heterozygosity is predicted to be 14%, suggesting that the population may not be viable in the long term. Sensitivity analyses showed that nest loss is the most important factor affecting population size and the survival probability of the population, which is supported by field studies. Though the new evidence shows that Cabot's Tragopan can build nests in spruce forest successfully, broad-leaf forest is still necessary for them for foraging, especially at some times of the year. The simulation also shows that the probability of survival and the size of the population will decrease markedly if the extent of suitable habitat is reduced even relatively slowly (such as 0.1% per year). Overall, we conclude that the PVA has provided very informative guidance to future management and research on Cabot's Tragopan at Wuyanling National Nature Reserve.


Sign in / Sign up

Export Citation Format

Share Document