population viability
Recently Published Documents


TOTAL DOCUMENTS

685
(FIVE YEARS 107)

H-INDEX

60
(FIVE YEARS 4)

2022 ◽  
Vol 266 ◽  
pp. 109430
Author(s):  
Robert Heinsohn ◽  
Robert Lacy ◽  
Andrew Elphinstone ◽  
Dean Ingwersen ◽  
Benjamin J. Pitcher ◽  
...  

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 652
Author(s):  
Carine Firmino Carvalho-Roel ◽  
Oswaldo Marçal Júnior

The blue-and-yellow macaw (Ara ararauna) is suffering from higher roadkill rates (RK) at the Emas National Park (ENP), an important Brazilian National Park in the Cerrado biome. This species is also a victim of nest poaching for illegal trade. We modeled the blue-and-yellow macaw population’s viability in ENP and how this viability is affected by roadkill and nest poaching. We hereby report that the species is critically at risk and could be extinct in about a decade when considering both threats. Without considering any threat, 150 individuals are necessary to maintain a viable population. When individuals are harvested at a roadkill rate of 0.008 individuals/km/year and at twice this level, the viability figures increase to 4500 and 7500 birds, respectively. For nest poaching, we estimated that 2000 individuals are required to maintain a viable population. When both threats are present, 5000 individuals are necessary. The dynamics of the population are highly sensitive to the age at which females reproduce for the first time and the proportion of reproducing adult females, followed by the rate of adult survival. Our model demonstrates how even a non-threatened highly mobile species, such as the blue-and-yellow macaw, may be at risk due to human activities.


2021 ◽  
pp. 1-17
Author(s):  
JOHN C.Z. WOINARSKI ◽  
ALYSON M. STOBO-WILSON ◽  
HEATHER M. CRAWFORD ◽  
STUART J. DAWSON ◽  
CHRIS R. DICKMAN ◽  
...  

Abstract Two introduced carnivores, the European red fox Vulpes vulpes and domestic cat Felis catus, have had extensive impacts on Australian biodiversity. In this study, we collate information on consumption of Australian birds by the fox, paralleling a recent study reporting on birds consumed by cats. We found records of consumption by foxes on 128 native bird species (18% of the non-vagrant bird fauna and 25% of those species within the fox’s range), a smaller tally than for cats (343 species, including 297 within the fox’s Australian range, a subset of that of the cat). Most (81%) bird species eaten by foxes are also eaten by cats, suggesting that predation impacts are compounded. As with consumption by cats, birds that nest or forage on the ground are most likely to be consumed by foxes. However, there is also some partitioning, with records of consumption by foxes but not cats for 25 bird species, indicating that impacts of the two predators may also be complementary. Bird species ≥3.4 kg were more likely to be eaten by foxes, and those <3.4 kg by cats. Our compilation provides an inventory and describes characteristics of Australian bird species known to be consumed by foxes, but we acknowledge that records of predation do not imply population-level impacts. Nonetheless, there is sufficient information from other studies to demonstrate that fox predation has significant impacts on the population viability of some Australian birds, especially larger birds, and those that nest or forage on the ground.


MethodsX ◽  
2021 ◽  
pp. 101599
Author(s):  
M. Tim Tinker ◽  
Kelly M. Zilliacus ◽  
Diana Ruiz ◽  
Bernie R. Tershy ◽  
Donald A. Croll
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3007
Author(s):  
Dmitrii O. Logofet ◽  
Leonid L. Golubyatnikov ◽  
Elena S. Kazantseva ◽  
Nina G. Ulanova

Our study is devoted to a subject popular in the field of matrix population models, namely, estimating the stochastic growth rate, λS, a quantitative measure of long-term population viability, for a discrete-stage-structured population monitored during many years. “Reproductive uncertainty” refers to a feature inherent in the data and life cycle graph (LCG) when the LCG has more than one reproductive stage, but when the progeny cannot be associated to a parent stage in a unique way. Reproductive uncertainty complicates the procedure of λS estimation following the defining of λS from the limit of a sequence consisting of population projection matrices (PPMs) chosen randomly from a given set of annual PPMs. To construct a Markov chain that governs the choice of PPMs for a local population of Eritrichium caucasicum, an short-lived perennial alpine plant species, we have found a local weather index that is correlated with the variations in the annual PPMs, and we considered its long time series as a realization of the Markov chain that was to be constructed. Reproductive uncertainty has required a proper modification of how to restore the transition matrix from a long realization of the chain, and the restored matrix has been governing random choice in several series of Monte Carlo simulations of long-enough sequences. The resulting ranges of λS estimates turn out to be more narrow than those obtained by the popular i.i.d. methods of random choice (independent and identically distributed matrices); hence, we receive a more accurate and reliable forecast of population viability.


2021 ◽  
Vol 118 (48) ◽  
pp. e2104642118
Author(s):  
Marty Kardos ◽  
Ellie E. Armstrong ◽  
Sarah W. Fitzpatrick ◽  
Samantha Hauser ◽  
Philip W. Hedrick ◽  
...  

The unprecedented rate of extinction calls for efficient use of genetics to help conserve biodiversity. Several recent genomic and simulation-based studies have argued that the field of conservation biology has placed too much focus on conserving genome-wide genetic variation, and that the field should instead focus on managing the subset of functional genetic variation that is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this approach in conservation. We find that population genetics theory and empirical results show that conserving genome-wide genetic variation is generally the best approach to prevent inbreeding depression and loss of adaptive potential from driving populations toward extinction. Focusing conservation efforts on presumably functional genetic variation will only be feasible occasionally, often misleading, and counterproductive when prioritized over genome-wide genetic variation. Given the increasing rate of habitat loss and other environmental changes, failure to recognize the detrimental effects of lost genome-wide genetic variation on long-term population viability will only worsen the biodiversity crisis.


2021 ◽  
Author(s):  
◽  
Joanna Wilson

<p>Population viability for small, isolated populations is determined by many factors, particularly demographic stochasticity. Coexistence of communities is promoted through resource partitioning, particularly if species share similar niche requirements. Demographic characteristics, long-term trends and patterns of partitioning were investigated for two reptile species: tuatara (Sphenodon punctatus) and Duvaucel's gecko (Hoplodactylus duvaucelii), using mark recapture techniques on North Brother Island, New Zealand. Capture time and location were recorded as well as snout-vent length, mass and sex of individuals. Adult population size, sex ratio, survival and recapture probability for both species were estimated. Intervention will be needed to prevent population collapse for tuatara, as the population is male-biased (3.24 males: 1 female), with sub-adults exhibiting a stronger bias (4.1 males: 1 female). The total population size is estimated at 390-437 adults, with high adult survival (95%). The Duvaucel's gecko population is stable enough to be harvested for translocation, as the population was estimated at 583-677 adults, with an even sex ratio. Adult survival was high (92%) and longevity is at least 43-50 years. Patterns in partitioning suggest tuatara are excluding Duvaucel's gecko as tuatara occupy vegetated areas and few animals were caught at the same time in the same place as a member of the other species (~10%). Long-term site fidelity appears to occur in both species as the majority of animals were captured previously within 10m (tuatara) or 15m (Duvaucel's gecko) of their 2008 location, and travelled less than 2m per year on average. Tuatara show an overall decline in body condition since 1957, which is more rapid in females, and may be related to intraspecific interactions and density-dependent effects. Gecko body condition is not declining, suggesting no negative effects at the population level are occurring as a result of competitive exclusion. This study indicates that characteristics that have implications for population viability have the capacity to differ, even for species with similar niche requirements occupying the same habitat, and supports the considerable value of long-term monitoring.</p>


2021 ◽  
Author(s):  
◽  
Joanna Wilson

<p>Population viability for small, isolated populations is determined by many factors, particularly demographic stochasticity. Coexistence of communities is promoted through resource partitioning, particularly if species share similar niche requirements. Demographic characteristics, long-term trends and patterns of partitioning were investigated for two reptile species: tuatara (Sphenodon punctatus) and Duvaucel's gecko (Hoplodactylus duvaucelii), using mark recapture techniques on North Brother Island, New Zealand. Capture time and location were recorded as well as snout-vent length, mass and sex of individuals. Adult population size, sex ratio, survival and recapture probability for both species were estimated. Intervention will be needed to prevent population collapse for tuatara, as the population is male-biased (3.24 males: 1 female), with sub-adults exhibiting a stronger bias (4.1 males: 1 female). The total population size is estimated at 390-437 adults, with high adult survival (95%). The Duvaucel's gecko population is stable enough to be harvested for translocation, as the population was estimated at 583-677 adults, with an even sex ratio. Adult survival was high (92%) and longevity is at least 43-50 years. Patterns in partitioning suggest tuatara are excluding Duvaucel's gecko as tuatara occupy vegetated areas and few animals were caught at the same time in the same place as a member of the other species (~10%). Long-term site fidelity appears to occur in both species as the majority of animals were captured previously within 10m (tuatara) or 15m (Duvaucel's gecko) of their 2008 location, and travelled less than 2m per year on average. Tuatara show an overall decline in body condition since 1957, which is more rapid in females, and may be related to intraspecific interactions and density-dependent effects. Gecko body condition is not declining, suggesting no negative effects at the population level are occurring as a result of competitive exclusion. This study indicates that characteristics that have implications for population viability have the capacity to differ, even for species with similar niche requirements occupying the same habitat, and supports the considerable value of long-term monitoring.</p>


Sign in / Sign up

Export Citation Format

Share Document