scholarly journals Global Attractors of Sixth Order PDEs Describing the Faceting of Growing Surfaces

2015 ◽  
Vol 28 (1) ◽  
pp. 49-67 ◽  
Author(s):  
M. D. Korzec ◽  
P. Nayar ◽  
P. Rybka

Abstract A spatially two-dimensional sixth order PDE describing the evolution of a growing crystalline surface h(x, y, t) that undergoes faceting is considered with periodic boundary conditions, as well as its reduced one-dimensional version. These equations are expressed in terms of the slopes $$u_1=h_{x}$$ u 1 = h x and $$u_2=h_y$$ u 2 = h y to establish the existence of global, connected attractors for both equations. Since unique solutions are guaranteed for initial conditions in $$\dot{H}^2_{per}$$ H ˙ p e r 2 , we consider the solution operator $$S(t): \dot{H}^2_{per} \rightarrow \dot{H}^2_{per}$$ S ( t ) : H ˙ p e r 2 → H ˙ p e r 2 , to gain our results. We prove the necessary continuity, dissipation and compactness properties.

Soft Matter ◽  
2018 ◽  
Vol 14 (21) ◽  
pp. 4388-4395 ◽  
Author(s):  
Bao-quan Ai ◽  
Zhi-gang Shao ◽  
Wei-rong Zhong

We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions.


Author(s):  
Shuguan Ji ◽  
Yong Li

This paper is devoted to the study of time-periodic solutions to the nonlinear one-dimensional wave equation with x-dependent coefficients u(x)ytt – (u(x)yx)x + g(x,t,y) = f(x,t) on (0,π) × ℝ under the periodic boundary conditions y(0,t) = y(π,t), yx(0,t) = yx(π,t) or anti-periodic boundary conditions y(0, t) = –y(π,t), yx[0,t) = – yx(π,t). Such a model arises from the forced vibrations of a non-homogeneous string and the propagation of seismic waves in non-isotropic media. Our main concept is that of the ‘weak solution’. For T, the rational multiple of π, we prove some important properties of the weak solution operator. Based on these properties, the existence and regularity of weak solutions are obtained.


1996 ◽  
Vol 07 (06) ◽  
pp. 873-881 ◽  
Author(s):  
NIELS GRØNBECH-JENSEN

We present a set of expressions for evaluating energies and forces between particles interacting logarithmically in a finite two-dimensional system with periodic boundary conditions. The formalism can be used for fast and accurate, dynamical or Monte Carlo, simulations of interacting line charges or interactions between point and line charges. The expressions are shown to converge to usual computer accuracy (~10–16) by adding only few terms in a single sum of standard trigonometric functions.


2010 ◽  
Vol 49 (1) ◽  
pp. 84-87 ◽  
Author(s):  
Weiwei Wang ◽  
Congpu Mu ◽  
Bin Zhang ◽  
Qingfang Liu ◽  
Jianbo Wang ◽  
...  

2001 ◽  
Vol 11 (10) ◽  
pp. 2647-2661 ◽  
Author(s):  
PEDRO G. LIND ◽  
JOÃO A. M. CORTE-REAL ◽  
JASON A. C. GALLAS

This paper reports histograms showing the detailed distribution of periodic and aperiodic motions in parameter-space of one-dimensional lattices of diffusively coupled quadratic maps subjected to periodic boundary conditions. Particular emphasis is given to the parameter domains where lattices support traveling patterns.


Sign in / Sign up

Export Citation Format

Share Document