scholarly journals Correction to: New Exotic Minimal Sets from Pseudo-Suspensions of Cantor Systems

Author(s):  
Jan P. Boronski ◽  
Alex Clark ◽  
Piotr Oprocha
Keyword(s):  
Author(s):  
Daniel Berend

AbstractLet σ be an ergodic endomorphism of the r–dimensional torus and Π a semigroup generated by two affine transformations lying above σ. We show that the flow defined by Π admits minimal sets of positive Hausdorff dimension and we give necessary and sufficient conditions for this flow to be minimal.


2020 ◽  
Vol 285 ◽  
pp. 107378
Author(s):  
Hui Xu ◽  
Enhui Shi ◽  
Yiruo Wang
Keyword(s):  

2003 ◽  
Vol 13 (07) ◽  
pp. 1721-1725 ◽  
Author(s):  
Francisco Balibrea ◽  
Roman Hric ◽  
L'ubomír Snoha

The topological structure of minimal sets of continuous maps on graphs, dendrites and dendroids is studied. A full characterization of minimal sets on graphs and a partial characterization of minimal sets on dendrites are given. An example of a minimal set containing an interval on a dendroid is given.


1991 ◽  
Vol 56 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
Steven Buechler

AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.


1985 ◽  
Vol 50 (4) ◽  
pp. 1054-1061 ◽  
Author(s):  
Steven Buechler

AbstractSuppose D ⊂ M is a strongly minimal set definable in M with parameters from C. We say D is locally modular if for all X, Y ⊂ D, with X = acl(X ∪ C)∩D, Y = acl(Y ∪ C) ∩ D and X ∩ Y ≠ ∅,We prove the following theorems.Theorem 1. Suppose M is stable and D ⊂ M is strongly minimal. If D is not locally modular then inMeqthere is a definable pseudoplane.(For a discussion of Meq see [M, §A].) This is the main part of Theorem 1 of [Z2] and the trichotomy theorem of [Z3].Theorem 2. Suppose M is stable and D, D′ ⊂ M are strongly minimal and nonorthogonal. Then D is locally modular if and only if D′ is locally modular.


Sign in / Sign up

Export Citation Format

Share Document