One theorem of Zil′ber's on strongly minimal sets

1985 ◽  
Vol 50 (4) ◽  
pp. 1054-1061 ◽  
Author(s):  
Steven Buechler

AbstractSuppose D ⊂ M is a strongly minimal set definable in M with parameters from C. We say D is locally modular if for all X, Y ⊂ D, with X = acl(X ∪ C)∩D, Y = acl(Y ∪ C) ∩ D and X ∩ Y ≠ ∅,We prove the following theorems.Theorem 1. Suppose M is stable and D ⊂ M is strongly minimal. If D is not locally modular then inMeqthere is a definable pseudoplane.(For a discussion of Meq see [M, §A].) This is the main part of Theorem 1 of [Z2] and the trichotomy theorem of [Z3].Theorem 2. Suppose M is stable and D, D′ ⊂ M are strongly minimal and nonorthogonal. Then D is locally modular if and only if D′ is locally modular.

2003 ◽  
Vol 13 (07) ◽  
pp. 1721-1725 ◽  
Author(s):  
Francisco Balibrea ◽  
Roman Hric ◽  
L'ubomír Snoha

The topological structure of minimal sets of continuous maps on graphs, dendrites and dendroids is studied. A full characterization of minimal sets on graphs and a partial characterization of minimal sets on dendrites are given. An example of a minimal set containing an interval on a dendroid is given.


1991 ◽  
Vol 56 (4) ◽  
pp. 1184-1194 ◽  
Author(s):  
Steven Buechler

AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.


2017 ◽  
Vol 63 (2) ◽  
pp. 165-169
Author(s):  
V. C. Prasad

Abstract Two new problems are posed and solved concerning minimal sets of prime implicants of Boolean functions. It is well known that the prime implicant set of a Boolean function should be minimal and have as few literals as possible. But it is not well known that min term repetitions should also be as few as possible to reduce power consumption. Determination of minimal sets of prime implicants is a well known problem. But nothing is known on the least number of (i) prime implicants (ii) literals and (iii) min term repetitions , any minimal set of prime implicants will have. These measures are useful to assess the quality of a minimal set. They are then extended to determine least number of prime implicants / implicates required to design a static hazard free circuit. The new technique tends to give smallest set of prime implicants for various objectives.


1972 ◽  
Vol 6 (1-2) ◽  
pp. 145-163
Author(s):  
Richard Freiman
Keyword(s):  

2007 ◽  
Vol 72 (3) ◽  
pp. 1019-1030 ◽  
Author(s):  
Assaf Hasson ◽  
Ehud Hrushovski

AbstractWe construct a strongly minimal set which is not a finite cover of one with DMP. We also show that for a strongly minimal theory T, generic automorphisms exist iff T has DMP, thus proving a conjecture of Kikyo and Pillay.


1971 ◽  
Vol 12 (3) ◽  
pp. 287-300 ◽  
Author(s):  
L. G. Kovács ◽  
Joachim Neubüser ◽  
B. H. Neumann

The starting point of this investigation was a question put to us by Martin B. Powell: If the prime number p divides the order of the finite group G, must there be a minimal set of generators of G that contains an element whose order is divisible by p? A set of generators of G is minimal if no set with fewer elements generates G. A minimal set of generators is clearly irredundant, in the sense that no proper subset of it generates G; an irredundant set of generators, however, need not be minimal, as is easily seen from the example of a cyclic group of composite (or infinite) order. Powell's question can be asked for irredundant instead of minimal sets of generators; it turns out that the answer is not the same in these two cases. A different formulation, together with some notation, may make the situation clearer.


1977 ◽  
Vol 42 (1) ◽  
pp. 11-28 ◽  
Author(s):  
Jonathan P. Seldin

The sequent calculus formulation (L-formulation) of the theory of functionality without the rules allowing for conversion of subjects of [3, §14E6] fails because the (cut) elimination theorem (ET) fails. This can be most easily seen by the fact that it is easy to prove in the systemandbut not (as is obvious if α is an atomic type [an F-simple])The error in the “proof” of ET in [14, §3E6], [3, §14E6], and [7, §9C] occurs in Stage 3, where it is implicitly assumed that if [x]X ≡ [x] Y then X ≡ Y. In the above counterexample, we have [x]x ≡ ∣ ≡ [x](∣x) but x ≢ ∣x. Since the formulation of [2, §9F] is not really satisfactory (for reasons stated in [3, §14E]), a new seguent calculus formulation is needed for the case in which the rules for subject conversions are not present. The main part of this paper is devoted to presenting such a formulation and proving it equivalent to the natural deduction formulation (T-formulation). The paper will conclude in §6 with some remarks on the result that every ob (term) with a type (functional character) has a normal form.The conventions and definitions of [3], especially of §12D and Chapter 14, will be used throughout the paper.


Author(s):  
Ali Muhammad Ali Rushdi ◽  
Raid Salih Badawi

This paper utilizes a modern regular and modular eight-variable Karnaugh map in a systematic investigation of cause-effect relationships modeled by partially-defined Boolean functions (PDBF) (known also as incompletely specified switching functions). First, we present a Karnaugh-map test that can decide whether a certain variable must be included in a set of supporting variables of the function, and, otherwise, might enforce the exclusion of this variable from such a set. This exclusion is attained via certain don’t-care assignments that ensure the equivalence of the Boolean quotient w.r.t. the variable, and that w.r.t. its complement, i.e., the exact matching of the half map representing the internal region of the variable, and the remaining half map representing the external region of the variable, in which case any of these two half maps replaces the original full map as a representation of the function. Such a variable exclusion might be continued w.r.t. other variables till a minimal set of supporting variables is reached. The paper addresses a dominantly-unspecified PDBF to obtain all its minimal sets of supporting variables without resort to integer programming techniques. For each of the minimal sets obtained, standard map methods for extracting prime implicants allow the construction of all irredundant disjunctive forms (IDFs). According to this scheme of first identifying a minimal set of supporting variables, we avoid the task of drawing prime-implicant loops on the initial eight-variable map, and postpone this task till the map is dramatically reduced in size. The procedure outlined herein has important ramifications for the newly-established discipline of Qualitative Comparative Analysis (QCA). These ramifications are not expected to be welcomed by the QCA community, since they clearly indicate that the too-often strong results claimed by QCA adherents need to be checked and scrutinized.


1990 ◽  
Vol 108 (3) ◽  
pp. 569-573 ◽  
Author(s):  
Konstantin Athanassopoulos

In this paper we give a description of the qualitative behaviour of the orbits near a non-trivial compact minimal set of a continuous flow on a 2-manifold. The first results in this direction were obtained in [1] and the present paper can be regarded as a continuation of that work. The main result can be stated as follows:Theorem 1·1. Let (ℝ, M, f) be a continuous flow on a 2-manifold M and A ⊂ M a non-trivial compact minimal set.


2001 ◽  
Vol 66 (3) ◽  
pp. 1127-1140 ◽  
Author(s):  
Enrique Casanovas ◽  
Martin Ziegler

Let M be an L-structure and A be an infinite subset of M. Two structures can be defined from A:• The induced structure on A has a name Rφ for every ∅-definable relation φ(M) ∩ An on A. Its language isA with its Lind-structure will be denoted by Aind.• The pair (M, A) is an L(P)-structure, where P is a unary predicate for A and L(P) = L ∪{P}.We call A small if there is a pair (N, B) elementarily equivalent to (M, A) and such that for every finite subset b of N every L–type over Bb is realized in N.A formula φ(x, y) has the finite cover property (f.c.p) in M if for all natural numbers k there is a set of φ–formulaswhich is k–consistent but not consistent in M. M has the f.c.p if some formula has the f.c.p in M. It is well known that unstable structures have the f.c.p. (see [6].) We will prove the following two theorems.Theorem A. Let A be a small subset of M. If M does not have the finite cover property then, for every λ ≥ ∣L∣, if both M andAindare λ–stable then (M, A) is λ–stable.Corollary 1.1 (Poizat [5]). If M does not have the finite cover property and N ≺ M is a small elementary substructure, then (M, N) is stable.Corollary 1.2 (Zilber [7]). If U is the group of wots of unity in the field ℂ of complex numbers the pair (ℂ, U) isω–stable.Proof. (See [4].) As a strongly minimal set ℂ is ω–stable and does not have the f.c.p. By the subspace theorem of Schmidt [3] every algebraic set intersects U in a finite union of translates of subgroups definable in the group structure of U alone. Whence Uind is nothing more than a (divisible) abelian group, which is ω–stable.


Sign in / Sign up

Export Citation Format

Share Document