The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order Predictor–Corrector methods

2006 ◽  
Vol 40 (3) ◽  
pp. 269-293 ◽  
Author(s):  
G. Psihoyios ◽  
T. E. Simos
2011 ◽  
Vol 22 (02) ◽  
pp. 133-153 ◽  
Author(s):  
G. A. PANOPOULOS ◽  
Z. A. ANASTASSI ◽  
T. E. SIMOS

A new general multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new symmetric eight-step predictor-corrector method with minimal phase-lag and algebraic order ten is also constructed. The new method is based on the multistep symmetric method of Quinlan–Tremaine,1 with eight steps and 8th algebraic order and is constructed to solve numerically the radial time-independent Schrödinger equation. It can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with minimal phase-lag is the most efficient of all the compared methods and for all the problems solved.


2000 ◽  
Vol 11 (01) ◽  
pp. 79-89 ◽  
Author(s):  
T. E. SIMOS

Explicit second and fourth algebraic order methods for the numerical solution of the Schrödinger equation are developed in this paper. The new methods have free parameters defined so that the methods are fitted to spherical Bessel and Neumann functions. Based on these new methods we obtained a variable-step algorithm. The results produced based on the numerical solution of the radial Schrödinger equation and the coupled differential equations arising from the Schrödinger equation indicate that this new approach is more efficient than other well known ones.


Sign in / Sign up

Export Citation Format

Share Document