algebraic order
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 12)

H-INDEX

30
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2756
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Tamara V. Karpukhina ◽  
Theodore E. Simos ◽  
Charalampos Tsitouras

Numerov-type methods using four stages per step and sharing sixth algebraic order are considered. The coefficients of such methods are depended on two free parameters. For addressing problems with oscillatory solutions, we traditionally try to satisfy some specific properties such as reduce the phase-lag error, extend the interval of periodicity or even nullify the amplification. All of these latter properties come from a test problem that poses as a solution to an ideal trigonometric orbit. Here, we propose the training of the coefficients of the selected family of methods in a wide set of relevant problems. After performing this training using the differential evolution technique, we arrive at a certain method that outperforms the other ones from this family in an even wider set of oscillatory problems.


2021 ◽  
Vol 4 (4(112)) ◽  
pp. 40-46
Author(s):  
Anzhelika Motailo ◽  
Galina Tuluchenko

This paper reports the construction of cubature formulas for a finite element in the form of a bipyramid, which have a second algebraic order of accuracy. The proposed formulas explicitly take into consideration the parameter of bipyramid deformation, which is important when using irregular grids. The cubature formulas were constructed by applying two schemes for the location of interpolation nodes along the polyhedron axes: symmetrical and asymmetrical. The intervals of change in the elongation (compression) parameter of a bipyramid semi-axis have been determined, within which interpolation nodes of the constructed formulas belong to the integration region, while the weight coefficients are positive, which warrants the stability of calculations based on these cubature formulas. If the deformation parameter of the bipyramid is equal to unity, then both cubature formulas hold for the octahedron and have a third algebraic order of accuracy. The resulting formulas make it possible to find elements of the local stiffness matrix on a finite element in the form of a bipyramid. When calculating with a finite number of digits, a rounding error occurs, which has the same order for each of the two cubature formulas. The intervals of change in the elongation (compression) parameter of the bipyramid semi-axis have been determined, which meet the requirements, which are employed in the ANSYS software package, for deviations in the volume of the bipyramid from the volume of the octahedron. Among the constructed cubature formulas for a bipyramid, the optimal formula in terms of the accuracy of calculations has been chosen, derived from applying a symmetrical scheme of the arrangement of nodes relative to the center of the bipyramid. This formula is invariant in relation to any affinity transformations of the local bipyramid coordinate system. The constructed cubature formulas could be included in libraries of methods for approximate integration used by those software suites that implement the finite element method.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Higinio Ramos ◽  
Ridwanulahi Abdulganiy ◽  
Ruth Olowe ◽  
Samuel Jator

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.


SIMULATION ◽  
2021 ◽  
pp. 003754972098082
Author(s):  
Ali Shokri ◽  
Mohammad Mehdizadeh Khalsaraei ◽  
Hamid Mohammad-Sedighi ◽  
Ali Atashyar

In this paper, a new family of two-step semi-hybrid schemes of the 12th algebraic order is proposed for the numerical simulation of initial-value problems of second-order ordinary differential equations. The proposed methods are symmetric and belong to the family of multiderivative methods. Each method of the new family appears to be hybrid, but after implementing the hybrid terms, it will continue as a multiderivative method. Therefore, the designation semi-hybrid is used. The consistency, convergence, stability, and periodicity of the methods are investigated and analyzed. In order to show the accuracy, consistency, convergence, and stability of the proposed family, it was tested on some well-known problems, such as the undamped Duffing’s equation. The simulation results demonstrate the efficiency and advantages of the proposed method compared to the currently available methods.


2021 ◽  
Vol 19 (1) ◽  
pp. 225-237
Author(s):  
Saleem Obaidat ◽  
Rizwan Butt

Abstract In this article, we have developed an implicit symmetric four-step method of sixth algebraic order with vanished phase-lag and its first derivative. The error and stability analysis of this method are investigated, and its efficiency is tested by solving efficiently the one-dimensional time-independent Schrödinger’s equation. The method performance is compared with other methods in the literature. It is found that for this problem the new method performs better than the compared methods.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 924 ◽  
Author(s):  
Khai Chien Lee ◽  
Norazak Senu ◽  
Ali Ahmadian ◽  
Siti Nur Iqmal Ibrahim

A class of explicit Runge–Kutta type methods with the involvement of fourth derivative, denoted as two-derivative Runge–Kutta type (TDRKT) methods, are proposed and investigated for solving a special class of third-order ordinary differential equations in the form u ‴ ( x ) = f ( x , u ( x ) ) . In this paper, two stages with algebraic order four and three stages with algebraic order five are presented. The derivation of TDRKT methods involves single third derivative and multiple evaluations of fourth derivative for every step. Stability property of the methods are analysed. Accuracy and efficiency of the new methods are exhibited through numerical experiments.


2019 ◽  
Vol 52 (1) ◽  
pp. 139-175
Author(s):  
Marcus Webb ◽  
Vincent Coppé ◽  
Daan Huybrechs

AbstractFourier series approximations of continuous but nonperiodic functions on an interval suffer the Gibbs phenomenon, which means there is a permanent oscillatory overshoot in the neighborhoods of the endpoints. Fourier extensions circumvent this issue by approximating the function using a Fourier series that is periodic on a larger interval. Previous results on the convergence of Fourier extensions have focused on the error in the $$L^2$$ L 2 norm, but in this paper we analyze pointwise and uniform convergence of Fourier extensions (formulated as the best approximation in the $$L^2$$ L 2 norm). We show that the pointwise convergence of Fourier extensions is more similar to Legendre series than classical Fourier series. In particular, unlike classical Fourier series, Fourier extensions yield pointwise convergence at the endpoints of the interval. Similar to Legendre series, pointwise convergence at the endpoints is slower by an algebraic order of a half compared to that in the interior. The proof is conducted by an analysis of the associated Lebesgue function, and Jackson- and Bernstein-type theorems for Fourier extensions. Numerical experiments are provided. We conclude the paper with open questions regarding the regularized and oversampled least squares interpolation versions of Fourier extensions.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1124 ◽  
Author(s):  
Saleem Obaidat ◽  
Said Mesloub

In this article we have developed a new explicit four-step linear method of fourth algebraic order with vanished phase-lag and its first derivative. The efficiency of the method is tested by solving effectively the one-dimensional time independent Schrödinger’s equation. The error and stability analysis are studied. Also, the new method is compared with other methods in the literature. It is found that this method is more efficient than these methods.


Sign in / Sign up

Export Citation Format

Share Document