The Homotopy Method for the Complete Solution of Quadratic Two-parameter Eigenvalue Problems

2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Bo Dong
Author(s):  
Jose Israel Rodriguez ◽  
Jin-Hong Du ◽  
Yiling You ◽  
Lek-Heng Lim

1990 ◽  
Vol 45 (7) ◽  
pp. 839-846 ◽  
Author(s):  
D. Pfirsch

AbstractIn 1925 Cherry [1] discussed two oscillators of positive and negative energy that are nonlinearly coupled in a special way, and presented a class of exact solutions of the nonlinear equations showing explosive instability independent of the strength of the nonlinearity and the initial amplitudes. In this paper Cherry's Hamiltonian is transformed into a form which allows a simple physical interpretation. The new Hamiltonian is generalized to three nonlinearly coupled oscillators; it corresponds to three-wave interaction in a continuum theory, like the Vlasov-Maxwell theory, if there exist linear negative energy waves [2-4, 5, 6], Cherry was able to present a two-parameter solution set for his example which would, however, allow a four-parameter solution set, and, as a first result, an analogous three-parameter solution set for the resonant three-oscillator case is obtained here which, however, would allow a six-parameter solution set. Nonlinear instability is therefore proven so far only for a very small part of the phase space of the oscillators. This paper gives in addition the complete solution for the three-oscillator case and shows that, except for a singular case, all initial conditions, especially those with arbitrarily small amplitudes, lead to explosive behaviour. This is true of the resonant case. The non-resonant oscillators can sometimes also become explosively unstable, but the initial amplitudes must not be infinitesimally small. A few examples are presented for illustration.


1993 ◽  
Vol 35 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Patrick J. Browne ◽  
B. D. Sleeman

We are interested in two parameter eigenvalue problems of the formsubject to Dirichlet boundary conditionsThe weight function 5 and the potential q will both be assumed to lie in L2[0,1]. The problem (1.1), (1.2) generates eigencurvesin the sense that for any fixed λ, ν(λ) is the nth eigenvalue ν, (according to oscillation indexing) of (1.1), (1.2). These curves are in fact analytic functions of λ and have been the object of considerable study in recent years. The survey paper [1] provides background in this area and itemises properties of eigencurves.


Author(s):  
Patrick J. Browne ◽  
B. D. Sleeman

SynopsisWe study the possibility of perturbing a matrix A by a diagonal matrix so that an eigenvalue problem with leading matrix A has specifiedeigenvalues when A is replaced by A+D. The particular cases presented are the one-parameter generalized eigenvalue problem (A× = λB μ×, a two-parameter eigenvalue problem (A + λB + μC)× = 0, a linked system ofsuch two-parameter problems and a quadratic eigenvalue problem (A + λB + λ2C)× = 0. The work extends results of Hadeler for the classical problem A× = λ×.


Sign in / Sign up

Export Citation Format

Share Document