scholarly journals Stability Analysis of Polytopic Discontinuous Galerkin Approximations of the Stokes Problem with Applications to Fluid–Structure Interaction Problems

2021 ◽  
Vol 90 (1) ◽  
Author(s):  
Paola F. Antonietti ◽  
Lorenzo Mascotto ◽  
Marco Verani ◽  
Stefano Zonca
Author(s):  
C. G. Giannopapa ◽  
G. Papadakis

In the conventional approach for fluid-structure interaction problems, the fluid and solid components are treated separately and information is exchanged across their interface. According to the conventional terminology, the current numerical methods can be grouped in two major categories: Partitioned methods and monolithic methods. Both methods use two separate sets of equations for fluid and solid. A unified solution method has been presented [1], which is different from these methods. The new method treats both fluid and solid as a single continuum, thus the whole computational domain is treated as one entity discretised on a single grid. Its behavior is described by a single set of equations, which are solved fully implicitly. In this paper, 2 time marching and one spatial discretisation scheme, widely used for fluids’ equations, are applied for the solution of the equations for solids. Using linear stability analysis, the accuracy and dissipation characteristics of the resulting difference equations are examined. The aforementioned schemes are applied to a transient structural problem (beam bending) and the results compare favorably with available analytic solutions and are consistent with the conclusions of the stability analysis. A parametric investigation using different meshes, time steps and beam sizes is also presented. For all cases examined the numerical solution was stable and robust and proved to be suitable for the next stage of application to full fluid-structure interaction problems.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
C. G. Giannopapa ◽  
G. Papadakis

In the conventional approach for fluid-structure-interaction problems, the fluid and solid components are treated separately and information is exchanged across their interface. According to the conventional terminology, the current numerical methods can be grouped in two major categories: partitioned methods and monolithic methods. Both methods use separate sets of equations for fluid and solid that have different unknown variables. A unified solution method has been presented in the previous work of Giannopapa and Papadakis (2004, “A New Formulation for Solids Suitable for a Unified Solution Method for Fluid-Structure Interaction Problems,” ASME PVP 2004, San Diego, CA, July, PVP Vol. 491–1, pp. 111–117), which is different from these methods. The new approach treats both fluid and solid as a single continuum; thus, the whole computational domain is treated as one entity discretized on a single grid. Its behavior is described by a single set of equations, which are solved fully implicitly. In this paper, the elastodynamic equations are reformulated so that they contain the same unknowns as the Navier–Stokes equations, namely, velocities and pressure. Two time marching and one spatial discretization scheme, widely used for fluid equations, are applied for the solution of the reformulated equations for solids. Using linear stability analysis, the accuracy and dissipation characteristics of the resulting difference equations are examined. The aforementioned schemes are applied to a transient structural problem (beam bending) and the results compare favorably with available analytic solutions and are consistent with the conclusions of the stability analysis. A parametric investigation using different meshes, time steps, and beam dimensions is also presented. For all cases examined, the numerical solution was stable and robust and therefore is suitable for the next stage of application to full fluid-structure-interaction problems.


Author(s):  
Tolotra Emerry Rajaomazava ◽  
Mustapha Benaouicha ◽  
Jacques-André Astolfi

In this paper, the flow over pitching and heaving hydrofoil is investigated. The viscous incompressible Navier-Stokes problem in Arbitrary Lagrangian-Eulerian (ALE) formulation is solved using the finite elements code Cast3M. The projection method is used to uncouple the velocity and pressure fields. The implicit Euler scheme is applied for time discretization of fluid equations. The dynamics of the hydrofoil is governed by a non-linear ordinary differential equation. The non-linear coupled problem is solved using the explicit staggered algorithm. The effects of fluid-structure interaction on hydrofoil dynamics and pressure center position are analyzed.


Sign in / Sign up

Export Citation Format

Share Document