Implementation of an Arbitrary Lagrangian-Eulerian Moving Mesh Capability in the ChiDG Discontinuous Galerkin Code with Applications to Fluid-Structure Interaction

Author(s):  
Eric M. Wolf ◽  
Christopher R. Schrock ◽  
Nathan A. Wukie
2014 ◽  
Vol 617 ◽  
pp. 66-69 ◽  
Author(s):  
Kamila Kotrasova ◽  
Ivan Grajciar ◽  
Eva Kormaníková

Ground-supported cylindrical tanks are used to store a variety of liquids. The fluid was develops a hydrodynamic pressures on walls and bottom of the tank during earthquake. This paper provides dynamic time-history response of concrete open top cylindrical liquid storage tank considering fluid-structure interaction due to earthquake. Numerical model of cylindrical tank was performed by application of the Finite Element Method (FEM) utilizing software ADINA. Arbitrary-Lagrangian-Eulerian (ALE) formulation was used for the problem analysis. Two way Fluid-Structure Interaction (FSI) techniques were used for the simulation of the interaction between the structure and the fluid at the common boundary


Author(s):  
Yogesh Ramesh Patel

This paper provides a brief overview of the research in the field of Fluid-structure interaction in Wind Turbines. Fluid-Structure Interaction (FSI) is the interplay of some movable or deformable structure with an internal or surrounding fluid flow. Flow brought about vibrations of two airfoils used in wind turbine blades are investigated by using a strong coupled fluid shape interplay approach. The approach is based totally on a regularly occurring Computational Fluid Dynamics (CFD) code that solves the Navier-Stokes equations defined in Arbitrary Lagrangian-Eulerian (ALE) coordinates by way of a finite extent method. The need for the FSI in the wind Turbine system is studied and comprehensively presented.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 94 ◽  
Author(s):  
Cornel Marius Murea

A monolithic semi-implicit method is presented for three-dimensional simulation of fluid–structure interaction problems. The updated Lagrangian framework is used for the structure modeled by linear elasticity equation and, for the fluid governed by the Navier–Stokes equations, we employ the Arbitrary Lagrangian Eulerian method. We use a global mesh for the fluid–structure domain where the fluid–structure interface is an interior boundary. The continuity of velocity at the interface is automatically satisfied by using globally continuous finite element for the velocity in the fluid–structure mesh. The method is fast because we solve only a linear system at each time step. Three-dimensional numerical tests are presented.


2018 ◽  
Vol 203 ◽  
pp. 06016 ◽  
Author(s):  
Ameen Topa ◽  
Do Kyun Kim ◽  
Youngtae Kim

Seamless pipes are produced using piercing rolling process in which round bars are fed between two rolls and pierced by stationary plug. During this process, the material undergoes severe deformation which renders it impractical to perform the numerical simulations with conventional finite element methods. In this paper, three dimensional numerical simulations of the piercing process are performed with Fluid-Structure Interaction (FSI) Method using Arbitrary Lagrangian-Eulerian (ALE) Formulation with LS DYNA software. The results of numerical simulations agree with experimental data of Plasticine workpiece and the validity of the analysis method is confirmed.


Author(s):  
Q. Li ◽  
H. Z. Liu ◽  
Z. Zhuang ◽  
S. Yamaguchi ◽  
M. Toyoda

A partitioned coupling algorithm is presented in this paper to solve the dynamic large-displacement fluid-structure interaction (DFSI) problems. In this algorithm, the program based on arbitrary Lagrangian Eulerian (ALE) and fractional two-step method is developed to calculate computational fluid dynamics (CFD) and computational mesh dynamics (CMD). ABAQUS is used to calculate computational structure dynamics (CSD). Some user subroutines are implemented into ABAQUS and the data are exchanged among CSD, CFD and CMD. Numerical results including elephant foot bulging (EFB) of the liquid storage tank are obtained under dynamic waveform.


2014 ◽  
Vol 81 (8) ◽  
Author(s):  
Y. Bazilevs ◽  
A. Korobenko ◽  
X. Deng ◽  
J. Yan ◽  
M. Kinzel ◽  
...  

Full-scale, 3D, time-dependent aerodynamics and fluid–structure interaction (FSI) simulations of a Darrieus-type vertical-axis wind turbine (VAWT) are presented. A structural model of the Windspire VAWT (Windspire energy, http://www.windspireenergy.com/) is developed, which makes use of the recently proposed rotation-free Kirchhoff–Love shell and beam/cable formulations. A moving-domain finite-element-based ALE-VMS (arbitrary Lagrangian–Eulerian-variational-multiscale) formulation is employed for the aerodynamics in combination with the sliding-interface formulation to handle the VAWT mechanical components in relative motion. The sliding-interface formulation is augmented to handle nonstationary cylindrical sliding interfaces, which are needed for the FSI modeling of VAWTs. The computational results presented show good agreement with the field-test data. Additionally, several scenarios are considered to investigate the transient VAWT response and the issues related to self-starting.


Sign in / Sign up

Export Citation Format

Share Document