scholarly journals Effects of climate change and industrialization on Lake Bolshoe Toko, eastern Siberia

2021 ◽  
Vol 65 (3) ◽  
pp. 335-352
Author(s):  
Boris K. Biskaborn ◽  
Biljana Narancic ◽  
Kathleen R. Stoof-Leichsenring ◽  
Lyudmila A. Pestryakova ◽  
Peter G. Appleby ◽  
...  

AbstractIndustrialization in the Northern Hemisphere has led to warming and pollution of natural ecosystems. We used paleolimnological methods to explore whether recent climate change and/or pollution had affected a very remote lake ecosystem, i.e. one without nearby direct human influence. We compared sediment samples that date from before and after the onset of industrialization in the mid-nineteenth century, from four short cores taken at water depths between 12.1 and 68.3 m in Lake Bolshoe Toko, eastern Siberia. We analyzed diatom assemblage changes, including diversity estimates, in all four cores and geochemical changes (mercury, nitrogen, organic carbon) from one core taken at an intermediate water depth. Chronologies for two cores were established using 210Pb and 137Cs. Sedimentation rates were 0.018 and 0.033 cm year−1 at the shallow- and deep-water sites, respectively. We discovered an increase in light planktonic diatoms (Cyclotella) and a decrease in heavily silicified euplanktonic Aulacoseira through time at deep-water sites, related to more recent warmer air temperatures and shorter periods of lake-ice cover, which led to pronounced thermal stratification. Diatom beta diversity in shallow-water communities changed significantly because of the development of new habitats associated with macrophyte growth. Mercury concentrations increased by a factor of 1.6 since the mid-nineteenth century as a result of atmospheric fallout. Recent increases in the chrysophyte Mallomonas in all cores suggested an acidification trend. We conclude that even remote boreal lakes are susceptible to the effects of climate change and human-induced pollution.

2021 ◽  
Author(s):  
Boris K. Biskaborn ◽  
Biljana Narancic ◽  
Kathleen R. Stoof-Leichsenring ◽  
Lyudmila A. Pestryakova ◽  
Peter G. Appleby ◽  
...  

<p>To test if recent climate change and pollution affected remote lake ecosystems without direct human influence, we used paleolimnological methods on lake sediments from a large, prestine, and deep lake in Yakutia, Russia. We compared diatoms and sediment-geochemistry from before and after the onset of industrialization in the mid-nineteenth century, at water depths between 12.1 and 68.3 m in Lake Bolshoe Toko. We analyzed diatom species changes and geochemical changes including mercury concentrations. Chronologies were established using <sup>210</sup>Pb and <sup>137</sup>Cs revealing sedimentation rates between 0.018 and 0.033 cm y<sup>-1</sup> at shallow- and deep-water sites, respectively. Increase in light planktonic diatoms (<em>Cyclotella</em>) and decrease in heavily silicified euplanktonic <em>Aulacoseira</em> through time at deep-water sites can be related to warming air temperatures and shorter periods of lake-ice cover, causing pronounced thermal stratification. Diatom beta diversity changed only significantly in shallow-water communities which can be related to the development of new habitats with macrophyte growth. Mercury concentrations increased by a factor of 1.6 as a result of atmospheric fallout. Increases in the chrysophyte <em>Mallomonas</em> indicates a trend towards acidification. We conclude that also remote boreal lakes are susceptible to human-induced long-distance pollution and recent climate change.</p>


2016 ◽  
Author(s):  
Daniel R. Engstrom ◽  
◽  
Mark B. Edlund ◽  
James E. Almendinger ◽  
Joy M. Ramstack Hobbs ◽  
...  

2015 ◽  
Vol 65 (1) ◽  
pp. 4-18 ◽  
Author(s):  
Jonas Bhend ◽  
Penny Whetton

2017 ◽  
Author(s):  
Eric N. Powell ◽  
◽  
Kelsey Kuykendall ◽  
Paula Moreno ◽  
Sara Pace

2018 ◽  
Vol 100 (4) ◽  
pp. 745-766
Author(s):  
Lillian C. Woo

In the last fifty years, empirical evidence has shown that climate change and environmental degradation are largely the results of increased world population, economic development, and changes in cultural and social norms. Thus far we have been unable to slow or reverse the practices that continue to produce more air and water pollution, soil and ocean degradation, and ecosystem decline. This paper analyzes the negative anthropogenic impact on the ecosystem and proposes a new design solution: ecomimesis, which uses the natural ecosystem as its template to conserve, restore, and improve existing ecosystems. Through its nonintrusive strategies and designs, and its goal of preserving natural ecosystems and the earth, ecomimesis can become an integral part of stabilizing and rehabilitating our natural world at the same time that it addresses the needs of growing economies and populations around the world.


2018 ◽  
Vol 24 (3) ◽  
pp. 267
Author(s):  
Lesley Hughes

‘The Greenhouse Effect and Nature Reserves’ by Robert Peters and Joan Darling, published in the journal Bioscience more than 30 years ago, was a ground-breaking synthesis. Drawing on paleoecology, community ecology and biogeography, the review laid out many concepts about species vulnerability to climate change that have become central tenets of research on climate change adaptation in natural ecosystems. Remarkably, the paper also provided a clear and logical framework for flexible, forward-thinking and interventionist management action, including recommendations about the design of protected areas, and the need for species translocation to reduce extinction risk. Reflecting on the legacy of this paper, it is clear that the uptake of such approaches over the intervening decades has been extremely slow, representing many lost opportunities to reduce species vulnerability to rapid environmental change. This paper is a tribute to the prescience of Peters and Darling, and a call to revisit their farsighted advice to meet conservation challenges that continue to accelerate.


Sign in / Sign up

Export Citation Format

Share Document