scholarly journals On the strength of the phase cross-correlation in retrieving the Green’s function information in a region affected by persistent aftershock sequences

Author(s):  
A. A. Hamed ◽  
Z. H. Shomali ◽  
A. Moradi

AbstractAlthough research on seismic interferometry is now entering a phase of maturity, earthquakes are still the most troublesome issues that plague the process in real applications. To address the problems that arise from spatially scattered and temporally transient enormous earthquakes, preference is usually given to the use of time-dependent weights. However, small earthquakes can also have a disturbing effect on the accuracy of interpretations if they are persistently clustered right next to the perpendicular bisector of the line joining station pairs or in close proximity to one of the stations. With regard to the suppression of these cluster earthquakes, commonly used solutions for dealing with monochromatic microseismic cluster events (e.g., implementing a band-reject filter around a comparatively narrow frequency band or whitening the amplitude spectra before calculating the cross-spectrum between two signals) may not have the necessary efficiency since earthquake clusters are generally a collection of events with different magnitudes, each having its own frequency and energy contents. Therefore, the only solution left in such a situation is to use stronger non-linear time-dependent weights (e.g., square of the running average or one-bit normalization), which may cause Green’s function amplitude information to be lost. In this paper, by simulating the records of a benchmark earthquake MN 5.2 with the help of empirical Green’s functions (EGF) obtained after the Ahar-Varzeghan Earthquake Doublet (MN 6.4 and MN 6.3), it is shown that the amplitude-unbiased phase cross-correlation is a relatively efficient approach in the face of the issues concerning long-standing cluster events.

Sign in / Sign up

Export Citation Format

Share Document