aftershock sequences
Recently Published Documents


TOTAL DOCUMENTS

296
(FIVE YEARS 122)

H-INDEX

25
(FIVE YEARS 5)

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 912-926
Author(s):  
Mohammad Ch. Basim ◽  
Farzaneh Pourreza ◽  
Meysam Mousazadeh ◽  
Arash Akbari Hamed

2021 ◽  
Author(s):  
Christian Grimm ◽  
Sebastian Hainzl ◽  
Martin Käser ◽  
Helmut Küchenhoff

Abstract Strong earthquakes cause aftershock sequences that are clustered in time according to a power decay law, and in space along their extended rupture, shaping a typically elongate pattern of aftershock locations. A widely used approach to model seismic clustering is the Epidemic Type Aftershock Sequence (ETAS) model, that shows three major biases: First, the conventional ETAS approach assumes isotropic spatial triggering, which stands in conflict with observations and geophysical arguments for strong earthquakes. Second, the spatial kernel has unlimited extent, allowing smaller events to exert disproportionate trigger potential over an unrealistically large area. Third, the ETAS model assumes complete event records and neglects inevitable short-term aftershock incompleteness as a consequence of overlapping coda waves. These three effects can substantially bias the parameter estimation and particularly lead to underestimated cluster sizes. In this article, we combine the approach of Grimm (2021), which introduced a generalized anisotropic and locally restricted spatial kernel, with the ETAS-Incomplete (ETASI) time model of Hainzl (2021), to define an ETASI space-time model with flexible spatial kernel that solves the abovementioned shortcomings. We apply different model versions to a triad of forecasting experiments of the 2019 Ridgecrest sequence, and evaluate the prediction quality with respect to cluster size, largest aftershock magnitude and spatial distribution. The new model provides the potential of more realistic simulations of on-going aftershock activity, e.g.~allowing better predictions of the probability and location of a strong, damaging aftershock, which might be beneficial for short term risk assessment and desaster response.


2021 ◽  
Author(s):  
LIBO CHEN ◽  
Jianhong Zhou ◽  
Qiluan Zhou

Abstract When a structure is subjected to an earthquake sequence, the high rate of aftershocks after the mainshock and cumulative damage caused by the earthquake sequence make the structure very dangerous. Considering the uncertainty in seismic occurrences, structural damage is often predicted using a seismic risk analysis. This approach has become a main measure for seismic disaster assessment, and provides a reasonable reference for post-earthquake emergency response decision-making and pre-earthquake seismic design. Therefore, it is of great significance to study a seismic risk analysis considering the effect(s) of aftershocks. In this study, the aftershock hazard is estimated for a post-mainshock environment based on an aftershock probabilistic seismic hazard analysis. Considering the uncertainty regarding the mainshock and aftershock occurrences, in addition to the functional relationship between the mainshock and aftershock parameters, the aftershock seismic hazard is estimated for the pre-mainshock environment. The mainshock fragility and aftershock fragility of regular girder bridges are evaluated based on the Kunnath damage model. Finally, considering the damage accumulation in bridge structures, the seismic hazard and seismic fragility are combined to establish a post-mainshock aftershock seismic risk framework and pre-mainshock mainshock-aftershock seismic risk analysis framework. Based on these, the mainshock risk and mainshock-aftershock risk are compared to verify the importance of considering the aftershock effects in seismic disaster assessments. The aftershock risks for the bridges of different post-mainshock damage states are compared, and the influence of the initial damage after the mainshock on the damage to the structure in the post-mainshock environment is studied.


2021 ◽  
Vol 150 ◽  
pp. 106941
Author(s):  
Hao Wu ◽  
Xiaoying Zhu ◽  
Ying Zhou ◽  
Abderrahim Djerrad ◽  
Yue Chen ◽  
...  

2021 ◽  
Vol 11 (19) ◽  
pp. 9143
Author(s):  
Marcello Chiodi ◽  
Orietta Nicolis ◽  
Giada Adelfio ◽  
Nicoletta D’Angelo ◽  
Alex Gonzàlez

Chilean seismic activity is one of the strongest in the world. As already shown in previous papers, seismic activity can be usefully described by a space–time branching process, such as the ETAS (Epidemic Type Aftershock Sequences) model, which is a semiparametric model with a large time-scale component for the background seismicity and a small time-scale component for the triggered seismicity. The use of covariates can improve the description of triggered seismicity in the ETAS model, so in this paper, we study the Chilean seismicity separately for the North and South area, using some GPS-related data observed together with ordinary catalog data. Our results show evidence that the use of some covariates can improve the fitting of the ETAS model.


Sign in / Sign up

Export Citation Format

Share Document