scholarly journals Local Central Limit Theorem for Determinantal Point Processes

2014 ◽  
Vol 157 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Peter J. Forrester ◽  
Joel L. Lebowitz
2021 ◽  
Vol 179 (3-4) ◽  
pp. 1145-1181 ◽  
Author(s):  
Sebastian Andres ◽  
Alberto Chiarini ◽  
Martin Slowik

AbstractWe establish a quenched local central limit theorem for the dynamic random conductance model on $${\mathbb {Z}}^d$$ Z d only assuming ergodicity with respect to space-time shifts and a moment condition. As a key analytic ingredient we show Hölder continuity estimates for solutions to the heat equation for discrete finite difference operators in divergence form with time-dependent degenerate weights. The proof is based on De Giorgi’s iteration technique. In addition, we also derive a quenched local central limit theorem for the static random conductance model on a class of random graphs with degenerate ergodic weights.


Author(s):  
Leonid V Bogachev ◽  
Zhonggen Su

We obtain the central limit theorem for fluctuations of Young diagrams around their limit shape in the bulk of the ‘spectrum’ of partitions λ ⊢ n ∈ (under the Plancherel measure), thus settling a long-standing problem posed by Logan & Shepp. Namely, under normalization growing like , the corresponding random process in the bulk is shown to converge, in the sense of finite-dimensional distributions, to a Gaussian process with independent values, while local correlations in the vicinity of each point, measured on various power scales, possess certain self-similarity. The proofs are based on the Poissonization techniques and use Costin–Lebowitz–Soshnikov's central limit theorem for determinantal random point processes. Our results admit a striking reformulation after the rotation of Young diagrams by 45°, whereby the normalization no longer depends on the location in the spectrum. In addition, we explain heuristically the link with an earlier result by Kerov on the convergence to a generalized Gaussian process.


Author(s):  
Jean-Dominique Deuschel ◽  
Xiaoqin Guo

AbstractWe prove a quenched local central limit theorem for continuous-time random walks in $${\mathbb {Z}}^d, d\ge 2$$ Z d , d ≥ 2 , in a uniformly-elliptic time-dependent balanced random environment which is ergodic under space-time shifts. We also obtain Gaussian upper and lower bounds for quenched and (positive and negative) moment estimates of the transition probabilities and asymptotics of the discrete Green’s function.


Sign in / Sign up

Export Citation Format

Share Document