bell numbers
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 27)

H-INDEX

11
(FIVE YEARS 4)

2022 ◽  
Vol 7 (2) ◽  
pp. 2929-2939
Author(s):  
Hye Kyung Kim ◽  

<abstract><p>The $ r $-Lah numbers generalize the Lah numbers to the $ r $-Stirling numbers in the same sense. The Stirling numbers and the central factorial numbers are one of the important tools in enumerative combinatorics. The $ r $-Lah number counts the number of partitions of a set with $ n+r $ elements into $ k+r $ ordered blocks such that $ r $ distinguished elements have to be in distinct ordered blocks. In this paper, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers ($ r\in \mathbb{N} $) are introduced parallel to the $ r $-extended central factorial numbers of the second kind and $ r $-extended central Bell polynomials. In addition, some identities related to these numbers including the generating functions, explicit formulas, binomial convolutions are derived. Moreover, the $ r $-central Lah numbers and the $ r $-central Lah-Bell numbers are shown to be represented by Riemann integral, respectively.</p></abstract>


2021 ◽  
Vol 10 (1) ◽  
pp. 153-165
Author(s):  
Tian-Xiao He ◽  
José L. Ramírez

Abstract In this paper we introduce different families of numerical and polynomial sequences by using Riordan pseudo involutions and Sheffer polynomial sequences. Many examples are given including dual of Hermite numbers and polynomials, dual of Bell numbers and polynomials, among other. The coefficients of some of these polynomials are related to the counting of different families of set partitions and permutations. We also studied the dual of Catalan numbers and dual of Fuss-Catalan numbers, giving several combinatorial identities.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Hyunseok Lee ◽  
Seongho Park ◽  
Jongkyum Kwon

The aim of this paper is to study the degenerate Bell numbers and polynomials which are degenerate versions of the Bell numbers and polynomials. We derive some new identities and properties of those numbers and polynomials that are associated with the degenerate Stirling numbers of both kinds.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Taekyun Kim ◽  
Dae San Kim ◽  
Lee-Chae Jang ◽  
Hyunseok Lee ◽  
Han-Young Kim

AbstractThe nth r-extended Lah–Bell number is defined as the number of ways a set with $n+r$ n + r elements can be partitioned into ordered blocks such that r distinguished elements have to be in distinct ordered blocks. The aim of this paper is to introduce incomplete r-extended Lah–Bell polynomials and complete r-extended Lah–Bell polynomials respectively as multivariate versions of r-Lah numbers and the r-extended Lah–Bell numbers and to investigate some properties and identities for these polynomials. From these investigations we obtain some expressions for the r-Lah numbers and the r-extended Lah–Bell numbers as finite sums.


2021 ◽  
Vol 35 (1) ◽  
pp. 44-54
Author(s):  
Reza Farhadian ◽  
Rafael Jakimczuk

Abstract The aim of this note is to study the distribution function of certain sequences of positive integers, including, for example, Bell numbers, factorials and primorials. In fact, we establish some general asymptotic formulas in this regard. We also prove some limits that connect these sequences with the number e. Furthermore, we present a generalization of the primorial.


2021 ◽  
Vol 7 (3) ◽  
pp. 4004-4016
Author(s):  
Taekyun Kim ◽  
◽  
Dae San Kim ◽  
Dmitry V. Dolgy ◽  
Hye Kyung Kim ◽  
...  

<abstract><p>Bell polynomials are widely applied in many problems arising from physics and engineering. The aim of this paper is to introduce new types of special polynomials and numbers, namely Bell polynomials and numbers of the second kind and poly-Bell polynomials and numbers of the second kind, and to derive their explicit expressions, recurrence relations and some identities involving those polynomials and numbers. We also consider degenerate versions of those polynomials and numbers, namely degenerate Bell polynomials and numbers of the second kind and degenerate poly-Bell polynomials and numbers of the second kind, and deduce their similar results.</p></abstract>


2020 ◽  
Vol 2021 (1) ◽  
pp. Article #S2R6
Author(s):  
Colin Defant ◽  
Keyword(s):  

2020 ◽  
pp. 1-21
Author(s):  
Ghania Guettai ◽  
Diffalah Laissaoui ◽  
Mourad Rahmani ◽  
Madjid Sebaoui
Keyword(s):  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuankui Ma ◽  
Dae San Kim ◽  
Taekyun Kim ◽  
Hanyoung Kim ◽  
Hyunseok Lee

Abstract Recently, the nth Lah–Bell number was defined as the number of ways a set of n elements can be partitioned into nonempty linearly ordered subsets for any nonnegative integer n. Further, as natural extensions of the Lah–Bell numbers, Lah–Bell polynomials are defined. We study Lah–Bell polynomials with and without the help of umbral calculus. Notably, we use three different formulas in order to express various known families of polynomials such as higher-order Bernoulli polynomials and poly-Bernoulli polynomials in terms of the Lah–Bell polynomials. In addition, we obtain several properties of Lah–Bell polynomials.


2020 ◽  
pp. 277-300
Author(s):  
Craig P. Bauer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document