negative moment
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 43)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Jin-Xin Liu ◽  
Xiao-Wei Ma ◽  
Lei Yan ◽  
Chuan-Dong Shen ◽  
Xin Zhang

2021 ◽  
Vol 14 (4) ◽  
pp. 98-112
Author(s):  
Wisam AL-Karawi ◽  
Abdullah A. Talal ◽  
Baidaa N. Hassan ◽  
Khattab S. Abdul-Razzaq

The current work investigates the behavior and strength of T-shaped cross section ring deep beams through a Finite element parametric study. Currently, ring diameter, loading type, concrete compressive strength and number of supports are taken into consideration. It is found that increasing ring diameter of beam by 12.5-25% leads to increase the maximum positive moment, maximum negative moment, maximum torsional moment and midspan deflection by 1.1-2.2%, 2.2-4.3%, 3-6% and 16-33%, respectively, while the load ultimate capacity increases by 11-17%. The positive and torsional moments at midspan and midspan deflection decrease by 23-36%, 3-11% and 6-14%, respectively when the loading type varies from concentered to full uniformly load over a span length of 33, 50, 67 and 100%, respectively. In a related context, this change in load type leads the negative moment at support and the load ultimate capacity to increase by 2-21% and 6-85%, respectively. The midspan positive moment, negative moment, torsional moment and load ultimate capacity increase by 20.4-71.3%, 20-69.7%, 15.6-43.8% and 21-73%, respectively, whereas deflection decreases by 1.4-11%, when increasing the compressive concrete strength by 45-190%. Finally, it is found that the load ultimate capacity increases by 82-348%, when number of supports increases by 25-100%, while torsional moment, maximum positive moments, maximum negative moments and midspan deflection decrease by 11-50%, 38-76.4%, 38.6-76.8% and 14-39%, respectively due to this increase in the number of supports.


Author(s):  
Jean-Dominique Deuschel ◽  
Xiaoqin Guo

AbstractWe prove a quenched local central limit theorem for continuous-time random walks in $${\mathbb {Z}}^d, d\ge 2$$ Z d , d ≥ 2 , in a uniformly-elliptic time-dependent balanced random environment which is ergodic under space-time shifts. We also obtain Gaussian upper and lower bounds for quenched and (positive and negative) moment estimates of the transition probabilities and asymptotics of the discrete Green’s function.


Author(s):  
Rasha A Waheeb

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of crushing that are almost identical for all types of steelreinforcement details and the basic requirements for the acceptable behaviorof reinforced concrete joints in the installations and the efficiency of thejoint and this may help us to prepare for disasters, whether natural or other,as happens with tremors The floor and failure that may occur due to wrongdesigns or old buildings and the possibility of using those connections totreat those joints and sections in reinforced or unarmed concrete facilitiesto preserve the safety of humans and buildings from sudden disasters andreduce and reduce risks, as well as qualitative control over the productionof concrete connections and sections free from defects to the extreme.


2021 ◽  
Vol 11 (21) ◽  
pp. 10305
Author(s):  
Mu-Xuan Tao ◽  
Zi-Ang Li ◽  
Qi-Liang Zhou ◽  
Li-Yan Xu

Vertical deflection of a frame beam is an important indicator in the limit-state analysis of frame structures, particularly for steel–concrete composite beams, which are usually designed with large spans and heavy loads. In this study, the equivalent flexural stiffness of composite frame beams is analysed to evaluate their vertical deflection. A theoretical beam model with a spring constraint boundary and varied stiffness segments is established to consider the influence of both the rotation restraint stiffness at the beam ends and the cracked section in the negative moment region, such that the inelastic bending deformation of the composite beams can be elaborately described. By an extensive parametric analysis, a fitting formula for evaluating the equivalent flexural stiffness of the composite beams, including the effects of the rotational constraint and the concrete cracking, is obtained. The validity of the proposed formula is demonstrated by comparing its calculation accuracy with those of existing design formulas for analysing the equivalent flexural stiffness of the composite beam members. Moreover, its utility is further verified by conducting non-linear finite element simulations of structural systems to examine the serviceability limit state and the entire process evolution of beam deflections under vertical loading. Finally, to facilitate the practical application of the proposed formula in engineering design, a simplified method to calculate the deflection of composite beams, which utilises the internal force distribution of elastic analysis, is presented based on the concept of equivalent flexural stiffness.


Buildings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 451
Author(s):  
Bilal El-Ariss ◽  
Moustafa Mansour ◽  
Tamer El-Maaddawy

The use of precast inverted T-beams has been frequently used to minimize construction activities and installation time. However, shipping and placement of large invert T-beams can become challenging tasks due to their weight. Decreasing the web height of the beam can be effective in reducing the beam weight. This paper considers inverted T-beams with two overhangs, negative moment regions, and one span, a positive moment region. The examined parameters were the web height and skew angle of the inverted T-beams. To avoid high costs of testing beams and to save time, the application of numerical modeling is, hence, inevitable. A calibrated 3D nonlinear numerical model, using ATENA software, was further used to numerically investigate the effects of reducing the weight, by decreasing the web height and varying the skew angle of inverted T-beams on their structural performance. The outcomes of this study indicated that reducing the web height of the beam was an effective tool to reduce the weight without jeopardizing the strength of the beams. Increasing the skew angle of the inverted T-beam also decreased their ductility.


Author(s):  
Shweta S. Bhade

While analyzing a multistorey building frame, conventionally all the probable loads are applied after modeling the entire building frame. But in practice the frame is constructed in various stages. Accordingly, the stability of frame varies at every construction stage. Even during construction freshly placed concrete floor is supported by previously cast floor by formwork. Thus, the loads assumed in conventional analysis will vary in transient situation. Obviously, results obtained by the traditional analysis will be unsuitable. Therefore, the frame should be analyzed at every construction stage taking into account variation in loads. The phenomenon known as Construction Sequence Analysis considers these uncertainties precisely. Therefore, the building structure should be analysed at every stage of construction taking into account the load variations. In this project two cases have been considered. Whereas in Case 1 the multistoried building (G+22 storied) with floating columns and transfer girder will be analysed by response spectrum method and considering P-delta effect as a whole for the subjected loading and in Case 2 the multistoried building (G+22storied) with floating columns and transfer girder will be analysed by response spectrum method with reference to the construction sequence or staged construction and considering P-delta effect. In the present study a G+22 storey multistoried R.C.C building model is modelled using Etabs 2019 software. Response spectrum analysis is made by considering building situated in zone III.Building models are analyzed by Etabs 2019 software to study the effect of maximum positive moment, maximum negative moment, maximum shear forces, maximum deflection, maximum torsion moment of transfer girder beam and total axial load under transfer girder and floating column etc


Sign in / Sign up

Export Citation Format

Share Document