The Pell equation over the Fibonacci ∘-ring

2008 ◽  
Vol 150 (3) ◽  
pp. 2084-2095
Author(s):  
V. G. Zhuravlev
Keyword(s):  
Author(s):  
Mengce Zheng ◽  
Noboru Kunihiro ◽  
Yuanzhi Yao
Keyword(s):  

2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


Author(s):  
Michael J. Jacobson ◽  
Hugh C. Williams
Keyword(s):  

Let c = ( c 1 , . . . , c r ) be a set of curves forming a minimum base on a surface, which, under a self-transformation, T , of the surface, transforms into a set T c expressible by the equivalences T c = Tc, where T is a square matrix of integers. Further, let the numbers of common points of pairs of the curves, c i , c j , be written as a symmetrical square matrix Г. Then the matrix T satisfies the equation TГT' = Г. The significance of solutions of this equation for a given matrix Г is discussed, and the following special surfaces are investigated: §§4-7. Surfaces, in particular quartic surfaces, wìth only two base curves. Self-transformations of these depend on the solutions of the Pell equation u 2 - kv 2 = 1 (or 4). §8. The quartic surface specialized only by being made to contain a twisted cubic curve. This surface has an involutory transformation determined by chords of the cubic, and has only one other rational curve on it, namely, the transform of the cubic. The appropriate Pell equation is u 2 - 17 v 2 = 4. §9. The quartic surface specialized only by being made to contain a line and a rational curve of order m to which the line is ( m - 1)⋅secant (for m = 1 the surface is made to contain two skew lines). The surface has two infinite sequences of self-transformations, expressible in terms of two transformations R and S , namely, a sequence of involutory transformations R S n , and a sequence of non-involutory transformations S n .


2003 ◽  
Vol 46 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Tommy Bülow

AbstractLet d > 1 be a square-free integer. Power residue criteria for the fundamental unit εd of the real quadratic fields modulo a prime p (for certain d and p) are proved by means of class field theory. These results will then be interpreted as criteria for the solvability of the negative Pell equation x2 − dp2y2 = −1. The most important solvability criterion deals with all d for which has an elementary abelian 2-class group and p ≡ 5 (mod 8) or p ≡ 9 (mod 16).


Sign in / Sign up

Export Citation Format

Share Document