Description of zero divisors in the monoid of semigroup varieties under the wreath product

2008 ◽  
Vol 152 (2) ◽  
pp. 292-297
Author(s):  
A. V. Tishchenko
1972 ◽  
Vol 31 (2) ◽  
pp. 357-357 ◽  
Author(s):  
Jacques Lewin
Keyword(s):  

2010 ◽  
Vol 17 (spec01) ◽  
pp. 799-802 ◽  
Author(s):  
Mehri Akhavan-Malayeri

Let W = G ≀ H be the wreath product of G by an n-generator abelian group H. We prove that every element of W′ is a product of at most n+2 commutators, and every element of W2 is a product of at most 3n+4 squares in W. This generalizes our previous result.


2014 ◽  
Vol 43 (1) ◽  
pp. 76-83 ◽  
Author(s):  
D. D. Anderson ◽  
Sangmin Chun
Keyword(s):  

1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


2007 ◽  
Vol 18 (05) ◽  
pp. 473-481
Author(s):  
BAOHUA FU

We recover the wreath product X ≔ Sym 2(ℂ2/± 1) as a transversal slice to a nilpotent orbit in 𝔰𝔭6. By using deformations of Springer resolutions, we construct a symplectic deformation of symplectic resolutions of X.


Sign in / Sign up

Export Citation Format

Share Document