Method of Direct Cutting-Out in the Problems of Elastic Equilibrium of Anisotropic Bodies with Cracks Under Longitudinal Shear

Author(s):  
К. V. Vasil’ev ◽  
H. Т. Sulym
Author(s):  
K. V. Vasil’ev ◽  
G. T. Sulym

The previously developed direct cutting-out method in application to isotropic materials, in particular to bodies with thin inhomogeneities in the form of cracks and thin deformable inclusions is extended to the case of taking into account the possible anisotropy of the material. The basis of the method is to modulate the original problem of determining the stress state of a limited body with thin inclusions by means of a technically simpler to solve problem of elastic equilibrium of an infinite space with a slightly increased number of thin inhomogeneities, which in turn form the boundaries of the investigated body. By loaded cracks we model the boundary conditions of the first kind, and by absolutely rigid inclusions embedded into a matrix with a certain tension – the boundary conditions of the second kind. Using the method of the jump functions and the interaction conditions of a matrix with inclusion, the problem is reduced to a system of singular integral equations, the solution of which is carried out using the method of collocations. Approbation of the developed approach is carried out on the problem of elastic equilibrium of anisotropic (orthotropic in direction of shear) half-space with a symmetrically loaded very flexible inclusion (a crack) at jammed half-space boundary. The influence of inhomogeneity orientation and the half-space material on the generalized stress intensity factors were studied.


Author(s):  
D.A. Ivanychev ◽  
E.Yu. Levina

In this work, we studied the axisymmetric elastic equilibrium of transversely isotropic bodies of revolution, which are simultaneously under the influence of surface and volume forces. The construction of the stress-strain state is carried out by means of the boundary state method. The method is based on the concepts of internal and boundary states conjugated by an isomorphism. The bases of state spaces are formed, orthonormalized, and the desired state is expanded in a series of elements of the orthonormal basis. The Fourier coefficients, which are quadratures, are calculated. In this work, we propose a method for forming bases of spaces of internal and boundary states, assigning a scalar product and forming a system of equations that allows one to determine the elastic state of anisotropic bodies. The peculiarity of the solution is that the obtained stresses simultaneously satisfy the conditions both on the boundary of the body and inside the region (volume forces), and they are not a simple superposition of elastic fields. Methods are presented for solving the first and second main problems of mechanics, the contact problem without friction and the main mixed problem of the elasticity theory for transversely isotropic finite solids of revolution that are simultaneously under the influence of volume forces. The given forces are distributed axisymmetrically with respect to the geometric axis of rotation. The solution of the first main problem for a non-canonical body of revolution is given, an analysis of accuracy is carried out and a graphic illustration of the result is given


1985 ◽  
Vol 28 (246) ◽  
pp. 2833-2839 ◽  
Author(s):  
Toshimi KONNO ◽  
Hideki SEKINE ◽  
Osamu TAMATE

Sign in / Sign up

Export Citation Format

Share Document