scholarly journals LLN for Quadratic Forms of Long Memory Time Series and Its Applications in Random Matrix Theory

2017 ◽  
Vol 31 (4) ◽  
pp. 2032-2055
Author(s):  
Pavel Yaskov
2019 ◽  
Vol 55 (4) ◽  
pp. 182-184
Author(s):  
Rui Chen ◽  
Changshui Yang ◽  
Huizhu Jia ◽  
Tiejun Huang

2000 ◽  
Vol 03 (03) ◽  
pp. 335-346 ◽  
Author(s):  
H. EUGENE STANLEY ◽  
LUÍS A. NUNES AMARAL ◽  
PARAMESWARAN GOPIKRISHNAN ◽  
YANHUI LIU ◽  
VASILIKI PLEROU ◽  
...  

In recent years, a considerable number of physicists have started applying physics concepts and methods to understand economic phenomena. The term "Econophysics" is sometimes used to describe this work. Economic fluctuations can have many repercussions, and understanding fluctuations is a topic that many physicists have contributed to in recent years. Further, economic systems are examples of complex interacting systems for which a huge amount of data exist and it is possible that the experience gained by physicists in studying fluctuations in physical systems might yield new results in economics. Much recent work in econophysics is focused on understanding the peculiar statistical properties of price fluctuations in financial time series. In this talk, we discuss three recent results. The first result concerns the probability distribution of stock price fluctuations. This distribution decreases with increasing fluctuations with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ by as much as 8 orders of magnitude. Further, this nonstable distribution preserves its functional form for fluctuations on time scales that differ by 3 orders of magnitude, from 1 min up to approximately 10 days. The second result concerns the accurate quantification of volatility correlations in financial time series. While price fluctuations themselves have rapidly decaying correlations, the volatility estimated by using either the absolute value or the square of the price fluctuations has correlations that decay as a power-law and persist for several months. The third result bears on the application of random matrix theory to understand the correlations among price fluctuations of any two different stocks. We compare the statistics of the cross-correlation matrix constructed from price fluctuations of the leading 1000 stocks and a matrix with independent random elements, i.e., a random matrix. Contrary to first expectations, we find little or no deviation from the universal predictions of random matrix theory for all but a few of the largest eigenvalues of the cross-correlation matrix.


Author(s):  
Jan W Dash ◽  
Xipei Yang ◽  
Mario Bondioli ◽  
Harvey J. Stein

Author(s):  
Oriol Bohigas ◽  
Hans A. Weidenmüller

An overview of the history of random matrix theory (RMT) is provided in this chapter. Starting from its inception, the authors sketch the history of RMT until about 1990, focusing their attention on the first four decades of RMT. Later developments are partially covered. In the past 20 years RMT has experienced rapid development and has expanded into a number of areas of physics and mathematics.


Sign in / Sign up

Export Citation Format

Share Document