long memory
Recently Published Documents





2023 ◽  
Héctor Araya ◽  
Natalia Bahamond ◽  
Lisandro Javier Fermín ◽  
Tania Roa ◽  
Soledad Torres

2022 ◽  
Vol 420 ◽  
pp. 126871
Ledys Llasmin Salazar Gomez ◽  
Soledad Torres ◽  
Jozef Kiseľák ◽  
Felix Fuders ◽  
Naoyuki Ishimura ◽  

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Longjin Lv ◽  
Changjuan Zheng ◽  
Luna Wang

This paper aims to study option pricing problem under the subordinated Brownian motion. Firstly, we prove that the subordinated Brownian motion controlled by the fractional diffusion equation has many financial properties, such as self-similarity, leptokurtic, and long memory, which indicate that the fractional calculus can describe the financial data well. Then, we investigate the option pricing under the assumption that the stock price is driven by the subordinated Brownian motion. The closed-form pricing formula for European options is derived. In the comparison with the classic Black–Sholes model, we find the option prices become higher, and the “volatility smiles” phenomenon happens in the proposed model. Finally, an empirical analysis is performed to show the validity of these results.

2022 ◽  
Ignacio N Lobato ◽  
Carlos Velasco

Abstract We propose a single step estimator for the autoregressive and moving-average roots (without imposing causality or invertibility restrictions) of a nonstationary Fractional ARMA process. These estimators employ an efficient tapering procedure, which allows for a long memory component in the process, but avoid estimating the nonstationarity component, which can be stochastic and/or deterministic. After selecting automatically the order of the model, we robustly estimate the AR and MA roots for trading volume for the thirty stocks in the Dow Jones Industrial Average Index in the last decade. Two empirical results are found. First, there is strong evidence that stock market trading volume exhibits non-fundamentalness. Second, non-causality is more common than non-invertibility.

2022 ◽  
Vol 9 ◽  
Xiuzhen Zhang ◽  
Riquan Zhang ◽  
Zhiping Lu

This article develops two new empirical likelihood methods for long-memory time series models based on adjusted empirical likelihood and mean empirical likelihood. By application of Whittle likelihood, one obtains a score function that can be viewed as the estimating equation of the parameters of the long-memory time series model. An empirical likelihood ratio is obtained which is shown to be asymptotically chi-square distributed. It can be used to construct confidence regions. By adding pseudo samples, we simultaneously eliminate the non-definition of the original empirical likelihood and enhance the coverage probability. Finite sample properties of the empirical likelihood confidence regions are explored through Monte Carlo simulation, and some real data applications are carried out.

2022 ◽  
Chen Xu ◽  
Ye Zhang

Abstract The asymptotic theory for the memory-parameter estimator constructed from the log-regression with wavelets is incomplete for 1/$f$ processes that are not necessarily Gaussian or linear. Having a complete version of this theory is necessary because of the importance of non-Gaussian and non-linear long-memory models in describing financial time series. To bridge this gap, we prove that, under some mild assumptions, a newly designed memory estimator, named LRMW in this paper, is asymptotically consistent. The performances of LRMW in three simulated long-memory processes indicate the efficiency of this new estimator.

Sign in / Sign up

Export Citation Format

Share Document