Study on the role of soot and heat fluxes in upward flame spread using a wall-resolved large eddy simulation approach

Author(s):  
Kazui Fukumoto ◽  
Changjian Wang ◽  
Jennifer X. Wen
Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 246
Author(s):  
Rozie Zangeneh

The Wall-modeled Large-eddy Simulation (WMLES) methods are commonly accompanied with an underprediction of the skin friction and a deviation of the velocity profile. The widely-used Improved Delayed Detached Eddy Simulation (IDDES) method is suggested to improve the prediction of the mean skin friction when it acts as WMLES, as claimed by the original authors. However, the model tested only on flow configurations with no heat transfer. This study takes a systematic approach to assess the performance of the IDDES model for separated flows with heat transfer. Separated flows on an isothermal wall and walls with mild and intense heat fluxes are considered. For the case of the wall with heat flux, the skin friction and Stanton number are underpredicted by the IDDES model however, the underprediction is less significant for the isothermal wall case. The simulations of the cases with intense wall heat transfer reveal an interesting dependence on the heat flux level supplied; as the heat flux increases, the IDDES model declines to predict the accurate skin friction.


Fluids ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 65 ◽  
Author(s):  
Arne Heinrich ◽  
Guido Kuenne ◽  
Sebastian Ganter ◽  
Christian Hasse ◽  
Johannes Janicka

Combustion will play a major part in fulfilling the world’s energy demand in the next 20 years. Therefore, it is necessary to understand the fundamentals of the flame–wall interaction (FWI), which takes place in internal combustion engines or gas turbines. The FWI can increase heat losses, increase pollutant formations and lowers efficiencies. In this work, a Large Eddy Simulation combined with a tabulated chemistry approach is used to investigate the transient near wall behavior of a turbulent premixed stoichiometric methane flame. This sidewall quenching configuration is based on an experimental burner with non-homogeneous turbulence and an actively cooled wall. The burner was used in a previous study for validation purposes. The transient behavior of the movement of the flame tip is analyzed by categorizing it into three different scenarios: an upstream, a downstream and a jump-like upstream movement. The distributions of the wall heat flux, the quenching distance or the detachment of the maximum heat flux and the quenching point are strongly dependent on this movement. The highest heat fluxes appear mostly at the jump-like movement because the flame behaves locally like a head-on quenching flame.


2002 ◽  
Author(s):  
RODNEY C SCHMIDT ◽  
THOMAS M SMITH ◽  
PAUL E DESJARDIN ◽  
THOMAS E VOTH ◽  
MARK A CHRISTON ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 043307 ◽  
Author(s):  
Joel U. Bretheim ◽  
Charles Meneveau ◽  
Dennice F. Gayme

Author(s):  
Peng Zhang ◽  
Xu Hong

This paper simulates the dispersed bubbly flow in a vertical tube with two different turbulence models based on Eulerian two-fluid frameworks. Both the RANS (Reynolds Averaged N-S equation) approach and LES (Large Eddy Simulation) approach can get results agreed with experiment well. The “wall peak” bubble distribution is captured. Compare with RANS with SST (Shear Stress Transport) turbulence model, the LES with WALE (Wall-Adapted Local Eddy-viscosity) sub-grid model can give transient and detail information of the flow field, and it shows better agreement.


2019 ◽  
Vol 43 (6) ◽  
pp. 625-638 ◽  
Author(s):  
Jordan Nielson ◽  
Kiran Bhaganagar

A novel and a robust high-fidelity numerical methodology has been developed to realistically estimate the net energy production of full-scale horizontal axis wind turbines in a convective atmospheric boundary layer, for both isolated and multiple wind turbine arrays by accounting for the wake effects between them. Large eddy simulation has been used to understand the role of atmospheric stability in net energy production (annual energy production) of full-scale horizontal axis wind turbines placed in the convective atmospheric boundary layer. The simulations are performed during the convective conditions corresponding to the National Renewable Energy Laboratory field campaign of July 2015. A mathematical framework was developed to incorporate the field-based measurements as boundary conditions for the large eddy simulation by averaging the surface flux over multiple diurnal cycles. The objective of the study is to quantify the role of surface flux in the calculation of energy production for an isolated, two and three wind turbine configuration. The study compares the mean value, +1 standard deviation, and −1 standard deviation from the measured surface flux to demonstrate the role of surface heat flux. The uniqueness of the study is that power deficits from large eddy simulation were used to determine wake losses and obtain a net energy production that accounts for the wake losses. The frequency of stability events, from field measurements, is input into the calculation of an ensemble energy production prediction with wake losses for different wind turbine arrays. The increased surface heat flux increases the atmospheric turbulence into the wind turbines. Higher turbulence results in faster wake recovery by a factor of two. The faster wake recovery rates result in lowering the power deficits from 46% to 28% for the two-turbine array. The difference in net energy production between the +1 and −1 standard deviation (with respect to surface heat flux) simulations was 10% for the two-turbine array and 8% for the three-turbine array. An ensemble net energy production by accounting for the wake losses indicated the overestimation of annual energy production from current practices could be corrected by accounting for variation of surface flux from the mean value.


Sign in / Sign up

Export Citation Format

Share Document