internal combustion engines
Recently Published Documents


TOTAL DOCUMENTS

4526
(FIVE YEARS 1355)

H-INDEX

65
(FIVE YEARS 10)

2022 ◽  
Vol 7 ◽  
Author(s):  
Shijie Bai ◽  
Hongsheng Zhang ◽  
Chang Li ◽  
Chaohui Wu ◽  
Xingyu Liang ◽  
...  

The primary objective of the present study was to investigate the impact of wall film on the combustion characteristics of premixed flames in internal combustion engines through the joint experimental and numerical techniques. The interaction between the premixed methane-air flame and n-dodecane film attached to the wall of a constant volume combustion bomb was experimentally examined. The flame propagation processes, as well as pressure evolution were quantitatively characterized. Then, computational fluid dynamic (CFD) simulation was performed incorporating the combustion chemistry model. To enable efficient simulation of the chemically reacting flow in engine chambers, a simplified modeling approach based on a two-step reaction scheme was developed. A compact reaction model for the selected model fuel n-dodecane was constructed and reduced to include 35 chemical species and 180 reactions. The flame propagation process of the premixed flame and its interaction with dry and wet walls was studied. The results showed that the propagation of the premixed flame could be divided into four stages, and the existence of the slit structure increased the instability of the flame structure in the near-wall region. The wall film tended to promote emissions, producing more unburned hydrocarbons, soot precursors and aldehydes.


2022 ◽  
pp. 1-22
Author(s):  
Bijie Yang ◽  
Ricardo F. Martinez-Botas ◽  
Yingxian Xue ◽  
Mingyang Yang

Abstract One-dimensional (1D) modelling is critical for turbomachinery unsteady performance prediction and system response assessment of internal combustion engines. This paper uses a novel 1D modelling (TURBODYNA) and proposes two additional features for the application to a twin-entry turbocharger turbine. Compared to single-entry turbines, twin-entry turbines enhance turbocharger transient response and reduce engine exhaust valve overlap periods. However, out-of-phase high frequency pulsating pressure waves lead to an unsteady mixing process from the two flows and pose great challenges to traditional 1D modelling. The present work resolves the mixing problem by directly solving mass, momentum and energy conservation equations during the mixing process instead of applying constant pressure assumption at the limb-rotor joint. Comparisons of TURBODYNA and an experimentally validated CFD suggest that TURBODYNA can not only provide a very good agreement on turbine performance, but also accurately capture unsteady features due to flow field inertial and pressure wave propagation. Levels of accuracy achieved by TURBODYNA have proved superior to traditional 1D modelling on turbine performance and the generality of the current 1D modelling has been explored by extending the application to another turbine featuring distinct characteristics.


Author(s):  
Emiliano Pipitone ◽  
Salvatore Caltabellotta

Abstract In-cylinder expansion of internal combustion engines based on Diesel or Otto cycles cannot be completely brought down to ambient pressure, causing a 20% theoretical energy loss. Several systems have been implemented to recover and use this energy such as turbocharging, turbo-mechanical and turbo-electrical compounding, or the implementation of Miller Cycles. In all these cases however, the amount of energy recovered is limited allowing the engine to reach an overall efficiency incremental improvement between 4% and 9%. Implementing an adequately designed expander-generator unit could efficiently recover the unexpanded exhaust gas energy and improve efficiency. In this work, the application of the expander-generator unit to a hybrid propulsion vehicle is considered, where the onboard energy storage receives power produced by an expander-generator, which could hence be employed for vehicle propulsion through an electric drivetrain. Starting from these considerations, a simple but effective modelling approach is used to evaluate the energetic potential of a spark-ignition engine electrically supercharged and equipped with an exhaust gas expander connected to an electric generator. The overall efficiency was compared to a reference turbocharged engine within a hybrid vehicle architecture. It was found that, if adequately recovered, the unexpanded gas energy could reduce engine fuel consumption and related pollutant emissions by 4% to 12%, depending on overall power output.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Chenyang Sun ◽  
Pengfei Sun ◽  
Jun Zhou ◽  
Jiawen Mao

In agricultural vehicles with internal combustion engines, owing to the use of rear-wheel drive or four-wheel drive, it is difficult to obtain information regarding the slip of the driving wheels. Excessive wheel slip, an inevitable phenomenon occurring during agricultural activities, can easily damage the original soil surface and result in excessive energy consumption. To solve these problems, a distributed drive agricultural vehicle (DDAV) based on multi-information fusion was proposed. The actual travel reduction of each wheel was calculated by determining the vehicle parameters in order to deliver the required torque to the four drive wheels via sliding mode control (SMC) and incremental proportional-integral (PI) control. Through this process, the vehicle always operates in a straight line. Test results show that, on a uniform surface, the travel reduction of each wheel can be maintained at the target value by using the incremental PI control strategy, with only minor fluctuations, to make the vehicle run in a straight line (R2 = 0.9999). Furthermore, on a separated surface, the travel reduction of each wheel can be maintained at the target value, and using the SMC strategy enables more identical coefficient of gross tractions for each wheel to make the vehicle run in a straight line (R2 = 0.9902). Unlike the non-control strategy, the vehicle reaches a stable state within 1 s, owing to the use of a controller that can effectively reduce the impact of road changes on vehicle velocity. This study can provide a reference for the drive control of DDAVs.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 396
Author(s):  
Laura Cirrincione ◽  
Salvatore Di Dio ◽  
Giorgia Peri ◽  
Gianluca Scaccianoce ◽  
Domenico Schillaci ◽  
...  

European Union Member States are called upon to meet internationally proposed environmental goals. This study is based, in particular, on the recommendation of the European Union (EU), which encourages Member States to pursue effective policies to reduce greenhouse gas (GHGs) emissions, including through appropriate changes in the behavioral habits of citizens. In this respect, among the main sectors involved, transport and mobility should certainly be mentioned. National institutions should be adequately involved in order to achieve the objectives set; in this regard, universities must certainly be considered for their educational value. These latter, for instance, could commit to improving the environmental performance of the mobility of their commuter students (to a not insignificant extent), since commuting modes are often the cause of high CO2 emissions; indeed, they still largely involve the use of internal combustion engines based on fossil fuels. In this paper, the effectiveness of a smartphone-app-based method to encourage commuter students to adopt more sustainable transport modes is evaluated. In more detail, starting from a statistical analysis of the status quo of mobility habits of a sample of students at the University of Palermo (Italy), an improvement of current habits toward a more sustainable path is encouraged through a new application (specifically created for this purpose) installed on students’ smartphones. Then, the daily and annual distances traveled by commuters with the new mobility modes are calculated, and the resulting savings in energy and CO2 emissions are estimated. Finally, it is proposed that the reduced emissions could be converted into energy-efficiency credits that the University could use to enter the emission trading system (ETS), here contextualized within the Italian “TEE” (“Energy Efficiency Credits”) scheme, while the benefits for students participating in the program could consist of reduced fees and free access to university services. The results obtained show the feasibility of the proposal. This approach can be considered a useful model that could be adopted by any other public institutions—not only universities—to facilitate their path toward decarbonization.


Trudy NAMI ◽  
2022 ◽  
pp. 53-59
Author(s):  
A. N. Kozlov ◽  
M. I. Araslanov

Introduction (problem statement and relevance). The depletion of oil fuels reserves and the steady growth of their consumption will require new solutions in the development of technologies based on renewable energy sources. The study of the possible alternative fuels use in internal combustion engines is a complex scientific task, including the research of the alternative fuels effect on the power plants operation efficiency.The purpose of the study was to obtain the speed characteristics of a diesel engine operating on ethyl alcohol and rapeseed oil.Methodology and research methods. An air-cooled with volumetric mixture formation tractor diesel engine of dimension 2Ch 10.5/12.0 was selected as an object of research. The study was carried out by a comparative method. To measure the speed characteristic a fixed cyclic fuel supply was applied after the engine reaching the nominal operating mode at a crankshaft speed of 1800 min-1 and an average effective pressure in the cylinder of 0.588 MPa. This approach, with the all-mode regulator of the fuel pump turned off, made it possible to identify the main regularities of intra-cylinder processes at different speed modes of engine operation.Scientific novelty and results. The article presents the bench tests results of a diesel engine operating at various speed modes on ethanol and rapeseed oil, and analyzes in detail the main indicators of the combustion process and the effective engine performance in comparison to the use of traditional fuel. The practical significance lies in the possibility of using the obtained results to improve the diesel engines operation on alternative renewable fuels.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 339
Author(s):  
Wojciech Koznowski ◽  
Andrzej Łebkowski

The trend to replace internal combustion engines with electric zero-emission drives, visible in the automotive industry, also exists in the shipbuilding industry. In contrary to land vehicles, the requirements for the electric propulsion system of tugs are much greater, which combined with the limited space and energy on board, makes any amount of energy valuable. Strategic changes in the policy of many countries, such as the “Fit for 55” package, introduce plans to significantly reduce CO2 emissions, which favors the development of alternative drives and their introduction to new areas of operation. This article presents that it is possible to reduce the amount of energy an electric tug spends for movement by applying the Particle Swarm Optimization method to modify the shape of its hull. A statistical analysis of public data was performed to determine the speed profiles of actual port tugs. The Van Oortmerssen method was used to determine the hull resistances of the proposed tug and the impact of the hull shape modification sets on reducing these resistances. Based on the six obtained speed profiles, it was determined that one of the tested variants of modifications made it possible to reduce energy consumption on average by 2.12%, to even 3.87% for one of the profiles, and that some modifications increase energy consumption by even 6.59%.


Sign in / Sign up

Export Citation Format

Share Document