scholarly journals Poly-symplectic Groupoids and Poly-Poisson Structures

2015 ◽  
Vol 105 (5) ◽  
pp. 693-721 ◽  
Author(s):  
Nicolas Martinez
Author(s):  
Maxence Mayrand

Abstract The first part of this paper is a generalization of the Feix–Kaledin theorem on the existence of a hyperkähler metric on a neighborhood of the zero section of the cotangent bundle of a Kähler manifold. We show that the problem of constructing a hyperkähler structure on a neighborhood of a complex Lagrangian submanifold in a holomorphic symplectic manifold reduces to the existence of certain deformations of holomorphic symplectic structures. The Feix–Kaledin structure is recovered from the twisted cotangent bundle. We then show that every holomorphic symplectic groupoid over a compact holomorphic Poisson surface of Kähler type has a hyperkähler structure on a neighborhood of its identity section. More generally, we reduce the existence of a hyperkähler structure on a symplectic realization of a holomorphic Poisson manifold of any dimension to the existence of certain deformations of holomorphic Poisson structures adapted from Hitchin’s unobstructedness theorem.


Author(s):  
Alexey V. Bolsinov ◽  
Andrey Yu. Konyaev ◽  
Vladimir S. Matveev

AbstractWe study and completely describe pairs of compatible Poisson structures near singular points of the recursion operator satisfying natural non-degeneracy condition.


2021 ◽  
Vol 62 (3) ◽  
pp. 033513
Author(s):  
Panagiotis Batakidis ◽  
Ramón Vera

2017 ◽  
Vol 23 (3) ◽  
pp. 765-800 ◽  
Author(s):  
JIANG-HUA LU ◽  
VICTOR MOUQUIN

1995 ◽  
Vol 34 (3) ◽  
pp. 443-452
Author(s):  
K. H. Bhaskara ◽  
John V. Leahy ◽  
K. Rama
Keyword(s):  

2008 ◽  
Author(s):  
P. A. Damianou ◽  
H. Sabourin ◽  
P. Vanhaecke ◽  
Rui Loja Fernandes ◽  
Roger Picken

Sign in / Sign up

Export Citation Format

Share Document