Reproducing Kernels and Coherent States on Julia Sets

2007 ◽  
Vol 10 (4) ◽  
pp. 297-312
Author(s):  
K. Thirulogasanthar ◽  
A. Krzyżak ◽  
G. Honnouvo
2017 ◽  
Vol 17 (15&16) ◽  
pp. 1292-1306 ◽  
Author(s):  
Rupak Chatterjee ◽  
Ting Yu

The support vector machine (SVM) is a popular machine learning classification method which produces a nonlinear decision boundary in a feature space by constructing linear boundaries in a transformed Hilbert space. It is well known that these algorithms when executed on a classical computer do not scale well with the size of the feature space both in terms of data points and dimensionality. One of the most significant limitations of classical algorithms using non-linear kernels is that the kernel function has to be evaluated for all pairs of input feature vectors which themselves may be of substantially high dimension. This can lead to computationally excessive times during training and during the prediction process for a new data point. Here, we propose using both canonical and generalized coherent states to calculate specific nonlinear kernel functions. The key link will be the reproducing kernel Hilbert space (RKHS) property for SVMs that naturally arise from canonical and generalized coherent states. Specifically, we discuss the evaluation of radial kernels through a positive operator valued measure (POVM) on a quantum optical system based on canonical coherent states. A similar procedure may also lead to calculations of kernels not usually used in classical algorithms such as those arising from generalized coherent states.


2019 ◽  
Vol 19 (2) ◽  
pp. 379-390
Author(s):  
Z Heibati ◽  
A Mahdifar ◽  
E Amooghorban ◽  
◽  
◽  
...  
Keyword(s):  

2020 ◽  
Vol 9 (9) ◽  
pp. 6759-6763
Author(s):  
G. Subathra ◽  
G. Jayalalitha
Keyword(s):  

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3507-3517
Author(s):  
Abhijit Pant ◽  
R.P. Pant ◽  
Kuldeep Prakash

The aim of the present paper is to study the dynamics of a class of orbitally continuous non-linear mappings defined on the set of real numbers and to apply the results on dynamics of functions to obtain tests of divisibility. We show that this class of mappings contains chaotic mappings. We also draw Julia sets of certain iterations related to multiple lowering mappings and employ the variations in the complexity of Julia sets to illustrate the results on the quotient and remainder. The notion of orbital continuity was introduced by Lj. B. Ciric and is an important tool in establishing existence of fixed points.


2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


Sign in / Sign up

Export Citation Format

Share Document