Prediction of viscoelastic material functions from constant stress- or strain-rate experiments

2013 ◽  
Vol 18 (2) ◽  
pp. 349-372 ◽  
Author(s):  
Ivan Saprunov ◽  
Marina Gergesova ◽  
Igor Emri
2009 ◽  
Vol 55 (189) ◽  
pp. 170-178 ◽  
Author(s):  
L. W. Morland

AbstractAs an ice sheet evolves, there are ice elements near the surface only recently subjected to stress following deposition, and others that have been subjected to stress over many ranges of time. The constant stress and constant strain-rate responses of ice in uniaxial compressive stress exhibit non-viscous behaviour, that is, the strain rate is not fixed by the stress (and conversely) but both vary with time. At constant stress the initial primary strain rate decreases with time to a minimum, described as secondary creep. It then increases and approaches an asymptotic limit, described as tertiary creep. Analogously, at constant strain rate the initial stress increases to a maximum then decreases to an asymptotic limit. These responses are used to construct a simple viscoelastic fluid constitutive law of differential type. Such a time-dependent law, with timescales changing widely with temperature, can be expected to yield a flow field in an ice sheet that is very different from that obtained from the viscous law. Only comparison solutions for both constitutive laws can determine the differences and significance of the non-viscous behaviour, and the simple law constructed would be a candidate for such comparisons.


Author(s):  
Yao Wang ◽  
Dagang Sun ◽  
Zhanlong Li ◽  
Yuan Qin ◽  
Bao Sun

The traditional viscoelastic constitutive models encounter the problems of massive parameters and ambiguous physical meanings. A new concept of variable-order viscoelastic constitutive (called VOVC) model is put forward based on the constant fractional-order constitutive model and the viscoelastic theory. The determination methods of the two parameters in the VOVC model, including the material coefficient and the viscoelastic coefficient, are discussed both in the tensile and the resilient processes. The comparisons are made between the VOVC model and the traditional constitutive models i.e. the constant fractional-order Kelvin-Voigt (CFKV) model, the Zhu-wang-tang nonlinear thermo-viscoelastic constitutive (ZWT) model and the Ogden nonlinear hyper-elastic (Ogden) model. The results show that the VOVC model with the constant material coefficient and the variable viscoelastic coefficient predicts the whole evolution of the constitutive behavior of the viscoelastic material under the constant strain rate more precisely. The constant material coefficient in the VOVC model means the stiffness of the viscoelastic material. The variable viscoelastic coefficient in the model means the distribution of the elasticity and viscosity. The VOVC model contains a simpler structure, fewer parameters, clearer physical meanings and higher precision.


Author(s):  
Seungbae Park ◽  
Soonwan Chung ◽  
Harold Ackler ◽  
Sandeep Makhar

The viscoelastic material properties of SU-8 and carbon nanotube-reinforced SU-8 composite material are characterized by tensile testing. Dogbone samples of 0.1mm thickness are prepared by micro-fabrication process, which is composed of spin coat, soft bake, expose, and post exposure bake. To fabricate CNT polymer composite, carbon nano-tube of 0.2wt% is mixed with SU-8. To observe the effect of applied strain rate and temperature on Young's modulus and Poisson's ratio, strain rate is varied from 5×10-5 to 2.5×10-4 (/sec) at elevated temperatures in the range of 25 to 200°C. Since the viscoelastic material properties are important in polymer, creep, stress relaxation and dynamic mechanical analyses are performed at elevated temperatures. The viscoelastic material properties of SU-8 and CNT-reinforced SU-8 composite are compared, and the mechanical reliability of these polymers in MEMS applications is discussed.


2012 ◽  
Vol 17 (1) ◽  
pp. 53-82 ◽  
Author(s):  
Jacques Luk-Cyr ◽  
Thibaut Crochon ◽  
Chun Li ◽  
Martin Lévesque

Sign in / Sign up

Export Citation Format

Share Document